MayBashendy commited on
Commit
0faa51e
·
verified ·
1 Parent(s): 11e624b

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +319 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k2_task3_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k2_task3_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7378
19
+ - Qwk: 0.1659
20
+ - Mse: 0.7378
21
+ - Rmse: 0.8589
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.25 | 2 | 4.2515 | 0.0000 | 4.2515 | 2.0619 |
53
+ | No log | 0.5 | 4 | 1.9737 | -0.0284 | 1.9737 | 1.4049 |
54
+ | No log | 0.75 | 6 | 1.2406 | 0.0279 | 1.2406 | 1.1138 |
55
+ | No log | 1.0 | 8 | 0.7407 | 0.0296 | 0.7407 | 0.8606 |
56
+ | No log | 1.25 | 10 | 0.7211 | -0.0101 | 0.7211 | 0.8492 |
57
+ | No log | 1.5 | 12 | 0.7348 | 0.0909 | 0.7348 | 0.8572 |
58
+ | No log | 1.75 | 14 | 0.9060 | 0.1763 | 0.9060 | 0.9518 |
59
+ | No log | 2.0 | 16 | 0.8842 | 0.1577 | 0.8842 | 0.9403 |
60
+ | No log | 2.25 | 18 | 0.9739 | 0.1025 | 0.9739 | 0.9869 |
61
+ | No log | 2.5 | 20 | 0.7557 | 0.0129 | 0.7557 | 0.8693 |
62
+ | No log | 2.75 | 22 | 0.7612 | 0.0159 | 0.7612 | 0.8725 |
63
+ | No log | 3.0 | 24 | 1.0109 | -0.0178 | 1.0109 | 1.0055 |
64
+ | No log | 3.25 | 26 | 1.1156 | -0.0247 | 1.1156 | 1.0562 |
65
+ | No log | 3.5 | 28 | 1.0309 | 0.0100 | 1.0309 | 1.0153 |
66
+ | No log | 3.75 | 30 | 0.7548 | 0.1097 | 0.7548 | 0.8688 |
67
+ | No log | 4.0 | 32 | 0.7626 | 0.1097 | 0.7626 | 0.8733 |
68
+ | No log | 4.25 | 34 | 0.9160 | 0.0680 | 0.9160 | 0.9571 |
69
+ | No log | 4.5 | 36 | 0.8156 | -0.0518 | 0.8156 | 0.9031 |
70
+ | No log | 4.75 | 38 | 0.6737 | 0.1828 | 0.6737 | 0.8208 |
71
+ | No log | 5.0 | 40 | 0.6937 | 0.1097 | 0.6937 | 0.8329 |
72
+ | No log | 5.25 | 42 | 1.0039 | -0.0966 | 1.0039 | 1.0020 |
73
+ | No log | 5.5 | 44 | 0.8182 | 0.1107 | 0.8182 | 0.9046 |
74
+ | No log | 5.75 | 46 | 0.7110 | 0.2304 | 0.7110 | 0.8432 |
75
+ | No log | 6.0 | 48 | 0.6900 | 0.2209 | 0.6900 | 0.8307 |
76
+ | No log | 6.25 | 50 | 0.8970 | 0.0587 | 0.8970 | 0.9471 |
77
+ | No log | 6.5 | 52 | 0.7513 | 0.1903 | 0.7513 | 0.8668 |
78
+ | No log | 6.75 | 54 | 0.7781 | 0.1829 | 0.7781 | 0.8821 |
79
+ | No log | 7.0 | 56 | 0.7929 | 0.1807 | 0.7929 | 0.8904 |
80
+ | No log | 7.25 | 58 | 0.8077 | 0.1818 | 0.8077 | 0.8987 |
81
+ | No log | 7.5 | 60 | 0.9624 | 0.1281 | 0.9624 | 0.9810 |
82
+ | No log | 7.75 | 62 | 0.9185 | 0.1770 | 0.9185 | 0.9584 |
83
+ | No log | 8.0 | 64 | 0.9379 | 0.1850 | 0.9379 | 0.9685 |
84
+ | No log | 8.25 | 66 | 0.9327 | 0.1504 | 0.9327 | 0.9658 |
85
+ | No log | 8.5 | 68 | 0.7700 | 0.2325 | 0.7700 | 0.8775 |
86
+ | No log | 8.75 | 70 | 0.7874 | 0.2115 | 0.7874 | 0.8874 |
87
+ | No log | 9.0 | 72 | 0.7178 | 0.1943 | 0.7178 | 0.8472 |
88
+ | No log | 9.25 | 74 | 1.5187 | 0.1067 | 1.5187 | 1.2324 |
89
+ | No log | 9.5 | 76 | 1.3784 | 0.0887 | 1.3784 | 1.1741 |
90
+ | No log | 9.75 | 78 | 0.7103 | 0.1047 | 0.7103 | 0.8428 |
91
+ | No log | 10.0 | 80 | 0.8823 | 0.0233 | 0.8823 | 0.9393 |
92
+ | No log | 10.25 | 82 | 0.9958 | 0.0865 | 0.9958 | 0.9979 |
93
+ | No log | 10.5 | 84 | 0.7641 | 0.2961 | 0.7641 | 0.8742 |
94
+ | No log | 10.75 | 86 | 1.0971 | 0.1353 | 1.0971 | 1.0474 |
95
+ | No log | 11.0 | 88 | 1.1375 | 0.0440 | 1.1375 | 1.0665 |
96
+ | No log | 11.25 | 90 | 0.7967 | 0.1983 | 0.7967 | 0.8926 |
97
+ | No log | 11.5 | 92 | 0.8788 | 0.1586 | 0.8788 | 0.9374 |
98
+ | No log | 11.75 | 94 | 0.8221 | 0.1605 | 0.8221 | 0.9067 |
99
+ | No log | 12.0 | 96 | 0.7933 | 0.0538 | 0.7933 | 0.8906 |
100
+ | No log | 12.25 | 98 | 0.9070 | 0.0287 | 0.9070 | 0.9524 |
101
+ | No log | 12.5 | 100 | 0.7381 | 0.1097 | 0.7381 | 0.8591 |
102
+ | No log | 12.75 | 102 | 0.6769 | 0.1815 | 0.6769 | 0.8228 |
103
+ | No log | 13.0 | 104 | 0.6621 | 0.2271 | 0.6621 | 0.8137 |
104
+ | No log | 13.25 | 106 | 1.0442 | 0.0355 | 1.0442 | 1.0219 |
105
+ | No log | 13.5 | 108 | 1.4319 | 0.0881 | 1.4319 | 1.1966 |
106
+ | No log | 13.75 | 110 | 1.0084 | 0.1771 | 1.0084 | 1.0042 |
107
+ | No log | 14.0 | 112 | 0.7062 | 0.2899 | 0.7062 | 0.8404 |
108
+ | No log | 14.25 | 114 | 0.8244 | 0.1738 | 0.8244 | 0.9080 |
109
+ | No log | 14.5 | 116 | 0.7183 | 0.2486 | 0.7183 | 0.8475 |
110
+ | No log | 14.75 | 118 | 0.8733 | 0.1625 | 0.8733 | 0.9345 |
111
+ | No log | 15.0 | 120 | 1.2200 | 0.0695 | 1.2200 | 1.1045 |
112
+ | No log | 15.25 | 122 | 0.9636 | 0.2119 | 0.9636 | 0.9816 |
113
+ | No log | 15.5 | 124 | 0.6874 | 0.1047 | 0.6874 | 0.8291 |
114
+ | No log | 15.75 | 126 | 0.6518 | 0.1304 | 0.6518 | 0.8074 |
115
+ | No log | 16.0 | 128 | 0.6697 | 0.1675 | 0.6697 | 0.8184 |
116
+ | No log | 16.25 | 130 | 0.8507 | 0.0988 | 0.8507 | 0.9223 |
117
+ | No log | 16.5 | 132 | 0.9023 | -0.0138 | 0.9023 | 0.9499 |
118
+ | No log | 16.75 | 134 | 0.7117 | 0.1599 | 0.7117 | 0.8436 |
119
+ | No log | 17.0 | 136 | 0.7177 | 0.2515 | 0.7177 | 0.8472 |
120
+ | No log | 17.25 | 138 | 0.7094 | 0.2005 | 0.7094 | 0.8422 |
121
+ | No log | 17.5 | 140 | 0.7732 | 0.1449 | 0.7732 | 0.8793 |
122
+ | No log | 17.75 | 142 | 0.8870 | 0.1025 | 0.8870 | 0.9418 |
123
+ | No log | 18.0 | 144 | 0.9034 | 0.0618 | 0.9034 | 0.9505 |
124
+ | No log | 18.25 | 146 | 0.7641 | 0.1449 | 0.7641 | 0.8741 |
125
+ | No log | 18.5 | 148 | 0.6808 | 0.2070 | 0.6808 | 0.8251 |
126
+ | No log | 18.75 | 150 | 0.7299 | 0.3331 | 0.7299 | 0.8543 |
127
+ | No log | 19.0 | 152 | 0.7070 | 0.2627 | 0.7070 | 0.8408 |
128
+ | No log | 19.25 | 154 | 0.7635 | 0.1440 | 0.7635 | 0.8738 |
129
+ | No log | 19.5 | 156 | 0.8739 | 0.0986 | 0.8739 | 0.9348 |
130
+ | No log | 19.75 | 158 | 0.8993 | 0.0556 | 0.8993 | 0.9483 |
131
+ | No log | 20.0 | 160 | 0.6874 | 0.1199 | 0.6874 | 0.8291 |
132
+ | No log | 20.25 | 162 | 0.6656 | 0.2747 | 0.6656 | 0.8159 |
133
+ | No log | 20.5 | 164 | 0.6780 | 0.1928 | 0.6780 | 0.8234 |
134
+ | No log | 20.75 | 166 | 0.6387 | 0.1740 | 0.6387 | 0.7992 |
135
+ | No log | 21.0 | 168 | 0.9740 | -0.0301 | 0.9740 | 0.9869 |
136
+ | No log | 21.25 | 170 | 1.2253 | 0.0991 | 1.2253 | 1.1069 |
137
+ | No log | 21.5 | 172 | 0.9812 | -0.0291 | 0.9812 | 0.9906 |
138
+ | No log | 21.75 | 174 | 0.7014 | 0.2166 | 0.7014 | 0.8375 |
139
+ | No log | 22.0 | 176 | 0.7050 | 0.2087 | 0.7050 | 0.8396 |
140
+ | No log | 22.25 | 178 | 0.7472 | 0.1599 | 0.7472 | 0.8644 |
141
+ | No log | 22.5 | 180 | 0.9467 | 0.0379 | 0.9467 | 0.9730 |
142
+ | No log | 22.75 | 182 | 0.8696 | 0.1360 | 0.8696 | 0.9325 |
143
+ | No log | 23.0 | 184 | 0.7128 | 0.1599 | 0.7128 | 0.8443 |
144
+ | No log | 23.25 | 186 | 0.6598 | 0.2550 | 0.6598 | 0.8123 |
145
+ | No log | 23.5 | 188 | 0.6591 | 0.2550 | 0.6591 | 0.8118 |
146
+ | No log | 23.75 | 190 | 0.7356 | 0.1485 | 0.7356 | 0.8577 |
147
+ | No log | 24.0 | 192 | 1.0317 | 0.0855 | 1.0317 | 1.0157 |
148
+ | No log | 24.25 | 194 | 1.0861 | 0.0726 | 1.0861 | 1.0421 |
149
+ | No log | 24.5 | 196 | 0.8099 | 0.2011 | 0.8099 | 0.8999 |
150
+ | No log | 24.75 | 198 | 0.7348 | 0.1846 | 0.7348 | 0.8572 |
151
+ | No log | 25.0 | 200 | 0.7382 | 0.2345 | 0.7382 | 0.8592 |
152
+ | No log | 25.25 | 202 | 0.7612 | 0.2572 | 0.7612 | 0.8725 |
153
+ | No log | 25.5 | 204 | 0.8150 | 0.1727 | 0.8150 | 0.9028 |
154
+ | No log | 25.75 | 206 | 0.7964 | 0.1783 | 0.7964 | 0.8924 |
155
+ | No log | 26.0 | 208 | 0.8020 | 0.1783 | 0.8020 | 0.8956 |
156
+ | No log | 26.25 | 210 | 0.7326 | 0.2243 | 0.7326 | 0.8559 |
157
+ | No log | 26.5 | 212 | 0.7233 | 0.2243 | 0.7233 | 0.8505 |
158
+ | No log | 26.75 | 214 | 0.7467 | 0.1431 | 0.7467 | 0.8641 |
159
+ | No log | 27.0 | 216 | 0.8580 | 0.0260 | 0.8580 | 0.9263 |
160
+ | No log | 27.25 | 218 | 0.8425 | -0.0079 | 0.8425 | 0.9179 |
161
+ | No log | 27.5 | 220 | 0.7158 | 0.1199 | 0.7158 | 0.8461 |
162
+ | No log | 27.75 | 222 | 0.7054 | 0.1807 | 0.7054 | 0.8399 |
163
+ | No log | 28.0 | 224 | 0.7313 | 0.1807 | 0.7313 | 0.8552 |
164
+ | No log | 28.25 | 226 | 0.7890 | 0.1553 | 0.7890 | 0.8883 |
165
+ | No log | 28.5 | 228 | 0.8690 | 0.0837 | 0.8690 | 0.9322 |
166
+ | No log | 28.75 | 230 | 0.8071 | 0.1986 | 0.8071 | 0.8984 |
167
+ | No log | 29.0 | 232 | 0.7813 | 0.2087 | 0.7813 | 0.8839 |
168
+ | No log | 29.25 | 234 | 0.8013 | 0.2437 | 0.8013 | 0.8951 |
169
+ | No log | 29.5 | 236 | 0.9309 | 0.1065 | 0.9309 | 0.9649 |
170
+ | No log | 29.75 | 238 | 0.9333 | 0.1065 | 0.9333 | 0.9661 |
171
+ | No log | 30.0 | 240 | 0.8316 | 0.0504 | 0.8316 | 0.9119 |
172
+ | No log | 30.25 | 242 | 0.8328 | 0.0504 | 0.8328 | 0.9126 |
173
+ | No log | 30.5 | 244 | 0.7474 | 0.1553 | 0.7474 | 0.8645 |
174
+ | No log | 30.75 | 246 | 0.7246 | 0.1254 | 0.7246 | 0.8513 |
175
+ | No log | 31.0 | 248 | 0.7599 | 0.0600 | 0.7599 | 0.8717 |
176
+ | No log | 31.25 | 250 | 0.7549 | 0.1506 | 0.7549 | 0.8688 |
177
+ | No log | 31.5 | 252 | 0.7257 | 0.1146 | 0.7257 | 0.8519 |
178
+ | No log | 31.75 | 254 | 0.7387 | 0.1495 | 0.7387 | 0.8595 |
179
+ | No log | 32.0 | 256 | 0.7457 | 0.1146 | 0.7457 | 0.8635 |
180
+ | No log | 32.25 | 258 | 0.8093 | 0.1440 | 0.8093 | 0.8996 |
181
+ | No log | 32.5 | 260 | 0.8572 | 0.0438 | 0.8572 | 0.9259 |
182
+ | No log | 32.75 | 262 | 0.9009 | -0.0008 | 0.9009 | 0.9492 |
183
+ | No log | 33.0 | 264 | 0.7966 | 0.1440 | 0.7966 | 0.8925 |
184
+ | No log | 33.25 | 266 | 0.7362 | 0.2138 | 0.7362 | 0.8580 |
185
+ | No log | 33.5 | 268 | 0.7248 | 0.1196 | 0.7248 | 0.8513 |
186
+ | No log | 33.75 | 270 | 0.7297 | 0.1553 | 0.7297 | 0.8542 |
187
+ | No log | 34.0 | 272 | 0.8642 | 0.1196 | 0.8642 | 0.9296 |
188
+ | No log | 34.25 | 274 | 0.9203 | 0.0107 | 0.9203 | 0.9593 |
189
+ | No log | 34.5 | 276 | 0.7992 | 0.1775 | 0.7992 | 0.8940 |
190
+ | No log | 34.75 | 278 | 0.7285 | 0.1199 | 0.7285 | 0.8535 |
191
+ | No log | 35.0 | 280 | 0.7186 | 0.1199 | 0.7186 | 0.8477 |
192
+ | No log | 35.25 | 282 | 0.8040 | 0.1495 | 0.8040 | 0.8967 |
193
+ | No log | 35.5 | 284 | 0.9081 | 0.0333 | 0.9081 | 0.9529 |
194
+ | No log | 35.75 | 286 | 0.9283 | -0.0097 | 0.9283 | 0.9635 |
195
+ | No log | 36.0 | 288 | 0.8321 | 0.1817 | 0.8321 | 0.9122 |
196
+ | No log | 36.25 | 290 | 0.7344 | 0.1249 | 0.7344 | 0.8570 |
197
+ | No log | 36.5 | 292 | 0.7105 | 0.1311 | 0.7105 | 0.8429 |
198
+ | No log | 36.75 | 294 | 0.7496 | 0.1553 | 0.7496 | 0.8658 |
199
+ | No log | 37.0 | 296 | 0.9113 | 0.0719 | 0.9113 | 0.9546 |
200
+ | No log | 37.25 | 298 | 1.0091 | 0.0440 | 1.0091 | 1.0045 |
201
+ | No log | 37.5 | 300 | 0.9025 | 0.0407 | 0.9025 | 0.9500 |
202
+ | No log | 37.75 | 302 | 0.8170 | 0.1440 | 0.8170 | 0.9039 |
203
+ | No log | 38.0 | 304 | 0.7614 | 0.1599 | 0.7614 | 0.8726 |
204
+ | No log | 38.25 | 306 | 0.7431 | 0.1659 | 0.7431 | 0.8620 |
205
+ | No log | 38.5 | 308 | 0.7374 | 0.1298 | 0.7374 | 0.8587 |
206
+ | No log | 38.75 | 310 | 0.7429 | 0.1146 | 0.7429 | 0.8619 |
207
+ | No log | 39.0 | 312 | 0.7787 | 0.1387 | 0.7787 | 0.8825 |
208
+ | No log | 39.25 | 314 | 0.8449 | 0.1336 | 0.8449 | 0.9192 |
209
+ | No log | 39.5 | 316 | 0.8102 | 0.1859 | 0.8102 | 0.9001 |
210
+ | No log | 39.75 | 318 | 0.7722 | 0.1923 | 0.7722 | 0.8787 |
211
+ | No log | 40.0 | 320 | 0.7859 | 0.1334 | 0.7859 | 0.8865 |
212
+ | No log | 40.25 | 322 | 0.7456 | 0.1434 | 0.7456 | 0.8635 |
213
+ | No log | 40.5 | 324 | 0.7003 | 0.0821 | 0.7003 | 0.8369 |
214
+ | No log | 40.75 | 326 | 0.8137 | 0.0867 | 0.8137 | 0.9020 |
215
+ | No log | 41.0 | 328 | 1.0610 | -0.0012 | 1.0610 | 1.0301 |
216
+ | No log | 41.25 | 330 | 1.1099 | -0.0029 | 1.1099 | 1.0535 |
217
+ | No log | 41.5 | 332 | 0.9557 | 0.0152 | 0.9557 | 0.9776 |
218
+ | No log | 41.75 | 334 | 0.7976 | 0.1423 | 0.7976 | 0.8931 |
219
+ | No log | 42.0 | 336 | 0.7730 | 0.1901 | 0.7730 | 0.8792 |
220
+ | No log | 42.25 | 338 | 0.7809 | 0.1921 | 0.7809 | 0.8837 |
221
+ | No log | 42.5 | 340 | 0.7870 | 0.1449 | 0.7870 | 0.8871 |
222
+ | No log | 42.75 | 342 | 0.7764 | 0.1449 | 0.7764 | 0.8812 |
223
+ | No log | 43.0 | 344 | 0.7633 | 0.1449 | 0.7633 | 0.8736 |
224
+ | No log | 43.25 | 346 | 0.7415 | 0.1506 | 0.7415 | 0.8611 |
225
+ | No log | 43.5 | 348 | 0.7094 | 0.1553 | 0.7094 | 0.8423 |
226
+ | No log | 43.75 | 350 | 0.7043 | 0.2252 | 0.7043 | 0.8392 |
227
+ | No log | 44.0 | 352 | 0.7224 | 0.2628 | 0.7224 | 0.8500 |
228
+ | No log | 44.25 | 354 | 0.7252 | 0.1659 | 0.7252 | 0.8516 |
229
+ | No log | 44.5 | 356 | 0.7655 | 0.1553 | 0.7655 | 0.8749 |
230
+ | No log | 44.75 | 358 | 0.7973 | 0.1495 | 0.7973 | 0.8929 |
231
+ | No log | 45.0 | 360 | 0.7911 | 0.1506 | 0.7911 | 0.8894 |
232
+ | No log | 45.25 | 362 | 0.7199 | 0.1146 | 0.7199 | 0.8485 |
233
+ | No log | 45.5 | 364 | 0.6839 | 0.1878 | 0.6839 | 0.8270 |
234
+ | No log | 45.75 | 366 | 0.6790 | 0.1433 | 0.6790 | 0.8240 |
235
+ | No log | 46.0 | 368 | 0.6767 | 0.1371 | 0.6767 | 0.8226 |
236
+ | No log | 46.25 | 370 | 0.7011 | 0.1254 | 0.7011 | 0.8373 |
237
+ | No log | 46.5 | 372 | 0.7675 | 0.1395 | 0.7675 | 0.8761 |
238
+ | No log | 46.75 | 374 | 0.7773 | 0.1395 | 0.7773 | 0.8816 |
239
+ | No log | 47.0 | 376 | 0.7227 | 0.1553 | 0.7227 | 0.8501 |
240
+ | No log | 47.25 | 378 | 0.6966 | 0.2271 | 0.6966 | 0.8346 |
241
+ | No log | 47.5 | 380 | 0.7397 | 0.2128 | 0.7397 | 0.8600 |
242
+ | No log | 47.75 | 382 | 0.7631 | 0.2087 | 0.7631 | 0.8735 |
243
+ | No log | 48.0 | 384 | 0.8369 | 0.0091 | 0.8369 | 0.9148 |
244
+ | No log | 48.25 | 386 | 0.8974 | 0.0651 | 0.8974 | 0.9473 |
245
+ | No log | 48.5 | 388 | 0.8545 | 0.0091 | 0.8545 | 0.9244 |
246
+ | No log | 48.75 | 390 | 0.7906 | 0.1144 | 0.7906 | 0.8891 |
247
+ | No log | 49.0 | 392 | 0.7743 | 0.1630 | 0.7743 | 0.8800 |
248
+ | No log | 49.25 | 394 | 0.7745 | 0.1541 | 0.7745 | 0.8801 |
249
+ | No log | 49.5 | 396 | 0.7591 | 0.1553 | 0.7591 | 0.8712 |
250
+ | No log | 49.75 | 398 | 0.7111 | 0.1553 | 0.7111 | 0.8433 |
251
+ | No log | 50.0 | 400 | 0.6798 | 0.1659 | 0.6798 | 0.8245 |
252
+ | No log | 50.25 | 402 | 0.6772 | 0.1659 | 0.6772 | 0.8229 |
253
+ | No log | 50.5 | 404 | 0.6943 | 0.1553 | 0.6943 | 0.8332 |
254
+ | No log | 50.75 | 406 | 0.7099 | 0.1553 | 0.7099 | 0.8426 |
255
+ | No log | 51.0 | 408 | 0.7237 | 0.1553 | 0.7237 | 0.8507 |
256
+ | No log | 51.25 | 410 | 0.7151 | 0.1143 | 0.7151 | 0.8456 |
257
+ | No log | 51.5 | 412 | 0.7251 | 0.1529 | 0.7251 | 0.8515 |
258
+ | No log | 51.75 | 414 | 0.7306 | 0.1553 | 0.7306 | 0.8547 |
259
+ | No log | 52.0 | 416 | 0.6979 | 0.1675 | 0.6979 | 0.8354 |
260
+ | No log | 52.25 | 418 | 0.6818 | 0.1856 | 0.6818 | 0.8257 |
261
+ | No log | 52.5 | 420 | 0.6900 | 0.1835 | 0.6900 | 0.8307 |
262
+ | No log | 52.75 | 422 | 0.7104 | 0.1740 | 0.7104 | 0.8429 |
263
+ | No log | 53.0 | 424 | 0.7953 | 0.1758 | 0.7953 | 0.8918 |
264
+ | No log | 53.25 | 426 | 0.8388 | 0.0786 | 0.8388 | 0.9159 |
265
+ | No log | 53.5 | 428 | 0.8389 | 0.0867 | 0.8389 | 0.9159 |
266
+ | No log | 53.75 | 430 | 0.7685 | 0.1440 | 0.7685 | 0.8766 |
267
+ | No log | 54.0 | 432 | 0.7333 | 0.2166 | 0.7333 | 0.8563 |
268
+ | No log | 54.25 | 434 | 0.7586 | 0.1310 | 0.7586 | 0.8710 |
269
+ | No log | 54.5 | 436 | 0.7704 | 0.0861 | 0.7704 | 0.8777 |
270
+ | No log | 54.75 | 438 | 0.8042 | 0.1541 | 0.8042 | 0.8968 |
271
+ | No log | 55.0 | 440 | 0.8540 | 0.1485 | 0.8540 | 0.9241 |
272
+ | No log | 55.25 | 442 | 0.9134 | 0.0041 | 0.9134 | 0.9557 |
273
+ | No log | 55.5 | 444 | 0.9295 | 0.0392 | 0.9295 | 0.9641 |
274
+ | No log | 55.75 | 446 | 0.8455 | 0.0562 | 0.8455 | 0.9195 |
275
+ | No log | 56.0 | 448 | 0.7709 | 0.2150 | 0.7709 | 0.8780 |
276
+ | No log | 56.25 | 450 | 0.7485 | 0.2150 | 0.7485 | 0.8652 |
277
+ | No log | 56.5 | 452 | 0.7374 | 0.2150 | 0.7374 | 0.8587 |
278
+ | No log | 56.75 | 454 | 0.7476 | 0.1553 | 0.7476 | 0.8646 |
279
+ | No log | 57.0 | 456 | 0.7554 | 0.1565 | 0.7554 | 0.8691 |
280
+ | No log | 57.25 | 458 | 0.7503 | 0.1565 | 0.7503 | 0.8662 |
281
+ | No log | 57.5 | 460 | 0.7264 | 0.2078 | 0.7264 | 0.8523 |
282
+ | No log | 57.75 | 462 | 0.7065 | 0.2078 | 0.7065 | 0.8405 |
283
+ | No log | 58.0 | 464 | 0.6928 | 0.2225 | 0.6928 | 0.8323 |
284
+ | No log | 58.25 | 466 | 0.6977 | 0.2271 | 0.6977 | 0.8353 |
285
+ | No log | 58.5 | 468 | 0.7138 | 0.2239 | 0.7138 | 0.8449 |
286
+ | No log | 58.75 | 470 | 0.7256 | 0.1529 | 0.7256 | 0.8518 |
287
+ | No log | 59.0 | 472 | 0.7723 | 0.1495 | 0.7723 | 0.8788 |
288
+ | No log | 59.25 | 474 | 0.8322 | 0.1387 | 0.8322 | 0.9123 |
289
+ | No log | 59.5 | 476 | 0.8314 | 0.1387 | 0.8314 | 0.9118 |
290
+ | No log | 59.75 | 478 | 0.8042 | 0.1387 | 0.8042 | 0.8968 |
291
+ | No log | 60.0 | 480 | 0.7451 | 0.1553 | 0.7451 | 0.8632 |
292
+ | No log | 60.25 | 482 | 0.7148 | 0.1553 | 0.7148 | 0.8455 |
293
+ | No log | 60.5 | 484 | 0.7121 | 0.1553 | 0.7121 | 0.8438 |
294
+ | No log | 60.75 | 486 | 0.7046 | 0.1553 | 0.7046 | 0.8394 |
295
+ | No log | 61.0 | 488 | 0.7116 | 0.1553 | 0.7116 | 0.8435 |
296
+ | No log | 61.25 | 490 | 0.7354 | 0.1506 | 0.7354 | 0.8576 |
297
+ | No log | 61.5 | 492 | 0.7395 | 0.1506 | 0.7395 | 0.8600 |
298
+ | No log | 61.75 | 494 | 0.7382 | 0.1495 | 0.7382 | 0.8592 |
299
+ | No log | 62.0 | 496 | 0.7202 | 0.1553 | 0.7202 | 0.8486 |
300
+ | No log | 62.25 | 498 | 0.7109 | 0.1612 | 0.7109 | 0.8432 |
301
+ | 0.2236 | 62.5 | 500 | 0.7058 | 0.1878 | 0.7058 | 0.8401 |
302
+ | 0.2236 | 62.75 | 502 | 0.7004 | 0.1878 | 0.7004 | 0.8369 |
303
+ | 0.2236 | 63.0 | 504 | 0.6954 | 0.1878 | 0.6954 | 0.8339 |
304
+ | 0.2236 | 63.25 | 506 | 0.6995 | 0.2225 | 0.6995 | 0.8364 |
305
+ | 0.2236 | 63.5 | 508 | 0.7056 | 0.2225 | 0.7056 | 0.8400 |
306
+ | 0.2236 | 63.75 | 510 | 0.7198 | 0.2304 | 0.7198 | 0.8484 |
307
+ | 0.2236 | 64.0 | 512 | 0.7320 | 0.1787 | 0.7320 | 0.8556 |
308
+ | 0.2236 | 64.25 | 514 | 0.7375 | 0.1722 | 0.7375 | 0.8588 |
309
+ | 0.2236 | 64.5 | 516 | 0.7446 | 0.1144 | 0.7446 | 0.8629 |
310
+ | 0.2236 | 64.75 | 518 | 0.7419 | 0.1144 | 0.7419 | 0.8613 |
311
+ | 0.2236 | 65.0 | 520 | 0.7378 | 0.1659 | 0.7378 | 0.8589 |
312
+
313
+
314
+ ### Framework versions
315
+
316
+ - Transformers 4.44.2
317
+ - Pytorch 2.4.0+cu118
318
+ - Datasets 2.21.0
319
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14523e51928406084992743e6d3ca7304f9caaf777da98857be78af7f2ab324b
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a101b5794e49387c904e0082dca3783afa3a6d1aa36b27f1a65cbf567856ef76
3
+ size 5240