MayBashendy commited on
Commit
23afa37
·
verified ·
1 Parent(s): 2aa9dcf

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +337 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run3_AugV5_k7_task5_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run3_AugV5_k7_task5_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5603
19
+ - Qwk: 0.6073
20
+ - Mse: 0.5603
21
+ - Rmse: 0.7485
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.1 | 2 | 4.0764 | 0.0130 | 4.0764 | 2.0190 |
53
+ | No log | 0.2 | 4 | 2.0564 | -0.0252 | 2.0564 | 1.4340 |
54
+ | No log | 0.3 | 6 | 1.4209 | 0.0030 | 1.4209 | 1.1920 |
55
+ | No log | 0.4 | 8 | 1.0602 | 0.2716 | 1.0602 | 1.0297 |
56
+ | No log | 0.5 | 10 | 1.2760 | 0.0374 | 1.2760 | 1.1296 |
57
+ | No log | 0.6 | 12 | 1.4109 | -0.0627 | 1.4109 | 1.1878 |
58
+ | No log | 0.7 | 14 | 1.2724 | -0.0477 | 1.2724 | 1.1280 |
59
+ | No log | 0.8 | 16 | 1.1484 | 0.1028 | 1.1484 | 1.0716 |
60
+ | No log | 0.9 | 18 | 1.0733 | 0.2068 | 1.0733 | 1.0360 |
61
+ | No log | 1.0 | 20 | 1.0495 | 0.2236 | 1.0495 | 1.0245 |
62
+ | No log | 1.1 | 22 | 1.0321 | 0.2236 | 1.0321 | 1.0159 |
63
+ | No log | 1.2 | 24 | 0.9954 | 0.2697 | 0.9954 | 0.9977 |
64
+ | No log | 1.3 | 26 | 0.9358 | 0.3243 | 0.9358 | 0.9674 |
65
+ | No log | 1.4 | 28 | 0.9000 | 0.3688 | 0.9000 | 0.9487 |
66
+ | No log | 1.5 | 30 | 0.9182 | 0.4109 | 0.9182 | 0.9582 |
67
+ | No log | 1.6 | 32 | 0.8474 | 0.4585 | 0.8474 | 0.9205 |
68
+ | No log | 1.7 | 34 | 0.8921 | 0.3037 | 0.8921 | 0.9445 |
69
+ | No log | 1.8 | 36 | 1.1198 | 0.2497 | 1.1198 | 1.0582 |
70
+ | No log | 1.9 | 38 | 1.5948 | -0.1370 | 1.5948 | 1.2628 |
71
+ | No log | 2.0 | 40 | 1.5142 | -0.1247 | 1.5142 | 1.2305 |
72
+ | No log | 2.1 | 42 | 1.0373 | 0.2467 | 1.0373 | 1.0185 |
73
+ | No log | 2.2 | 44 | 0.7922 | 0.4218 | 0.7922 | 0.8900 |
74
+ | No log | 2.3 | 46 | 0.7808 | 0.4420 | 0.7808 | 0.8836 |
75
+ | No log | 2.4 | 48 | 0.7535 | 0.4568 | 0.7535 | 0.8680 |
76
+ | No log | 2.5 | 50 | 0.7503 | 0.4953 | 0.7503 | 0.8662 |
77
+ | No log | 2.6 | 52 | 0.6959 | 0.5235 | 0.6959 | 0.8342 |
78
+ | No log | 2.7 | 54 | 0.7635 | 0.5487 | 0.7635 | 0.8738 |
79
+ | No log | 2.8 | 56 | 1.0131 | 0.3706 | 1.0131 | 1.0065 |
80
+ | No log | 2.9 | 58 | 1.0251 | 0.4140 | 1.0251 | 1.0125 |
81
+ | No log | 3.0 | 60 | 0.9034 | 0.4681 | 0.9034 | 0.9505 |
82
+ | No log | 3.1 | 62 | 0.7010 | 0.4616 | 0.7010 | 0.8373 |
83
+ | No log | 3.2 | 64 | 0.6195 | 0.6363 | 0.6195 | 0.7871 |
84
+ | No log | 3.3 | 66 | 0.6177 | 0.6207 | 0.6177 | 0.7859 |
85
+ | No log | 3.4 | 68 | 0.6122 | 0.6690 | 0.6122 | 0.7824 |
86
+ | No log | 3.5 | 70 | 0.6054 | 0.6866 | 0.6054 | 0.7781 |
87
+ | No log | 3.6 | 72 | 0.5906 | 0.6869 | 0.5906 | 0.7685 |
88
+ | No log | 3.7 | 74 | 0.5826 | 0.7455 | 0.5826 | 0.7633 |
89
+ | No log | 3.8 | 76 | 0.5776 | 0.7404 | 0.5776 | 0.7600 |
90
+ | No log | 3.9 | 78 | 0.6177 | 0.6644 | 0.6177 | 0.7860 |
91
+ | No log | 4.0 | 80 | 0.5713 | 0.7193 | 0.5713 | 0.7559 |
92
+ | No log | 4.1 | 82 | 0.5571 | 0.7005 | 0.5571 | 0.7464 |
93
+ | No log | 4.2 | 84 | 0.5568 | 0.7399 | 0.5568 | 0.7462 |
94
+ | No log | 4.3 | 86 | 0.5813 | 0.7304 | 0.5813 | 0.7624 |
95
+ | No log | 4.4 | 88 | 0.5992 | 0.7395 | 0.5992 | 0.7741 |
96
+ | No log | 4.5 | 90 | 0.5646 | 0.7177 | 0.5646 | 0.7514 |
97
+ | No log | 4.6 | 92 | 0.6011 | 0.6210 | 0.6011 | 0.7753 |
98
+ | No log | 4.7 | 94 | 0.6215 | 0.6753 | 0.6215 | 0.7884 |
99
+ | No log | 4.8 | 96 | 0.5613 | 0.6751 | 0.5613 | 0.7492 |
100
+ | No log | 4.9 | 98 | 0.5921 | 0.6886 | 0.5921 | 0.7695 |
101
+ | No log | 5.0 | 100 | 0.5858 | 0.7396 | 0.5858 | 0.7654 |
102
+ | No log | 5.1 | 102 | 0.5766 | 0.7246 | 0.5766 | 0.7593 |
103
+ | No log | 5.2 | 104 | 0.5887 | 0.6733 | 0.5887 | 0.7673 |
104
+ | No log | 5.3 | 106 | 0.5937 | 0.6445 | 0.5937 | 0.7705 |
105
+ | No log | 5.4 | 108 | 0.6360 | 0.6296 | 0.6360 | 0.7975 |
106
+ | No log | 5.5 | 110 | 0.6987 | 0.6447 | 0.6987 | 0.8359 |
107
+ | No log | 5.6 | 112 | 0.6528 | 0.6363 | 0.6528 | 0.8080 |
108
+ | No log | 5.7 | 114 | 0.5694 | 0.6883 | 0.5694 | 0.7546 |
109
+ | No log | 5.8 | 116 | 0.5639 | 0.7199 | 0.5639 | 0.7509 |
110
+ | No log | 5.9 | 118 | 0.6260 | 0.6404 | 0.6260 | 0.7912 |
111
+ | No log | 6.0 | 120 | 0.6428 | 0.6507 | 0.6428 | 0.8017 |
112
+ | No log | 6.1 | 122 | 0.6770 | 0.6492 | 0.6770 | 0.8228 |
113
+ | No log | 6.2 | 124 | 0.5775 | 0.6695 | 0.5775 | 0.7599 |
114
+ | No log | 6.3 | 126 | 0.5924 | 0.7061 | 0.5924 | 0.7697 |
115
+ | No log | 6.4 | 128 | 0.6309 | 0.7067 | 0.6309 | 0.7943 |
116
+ | No log | 6.5 | 130 | 0.6292 | 0.6505 | 0.6292 | 0.7932 |
117
+ | No log | 6.6 | 132 | 0.6357 | 0.6064 | 0.6357 | 0.7973 |
118
+ | No log | 6.7 | 134 | 0.6041 | 0.6502 | 0.6041 | 0.7772 |
119
+ | No log | 6.8 | 136 | 0.6200 | 0.6748 | 0.6200 | 0.7874 |
120
+ | No log | 6.9 | 138 | 0.6581 | 0.5964 | 0.6581 | 0.8112 |
121
+ | No log | 7.0 | 140 | 0.5902 | 0.6582 | 0.5902 | 0.7683 |
122
+ | No log | 7.1 | 142 | 0.5489 | 0.7147 | 0.5489 | 0.7409 |
123
+ | No log | 7.2 | 144 | 0.5637 | 0.6919 | 0.5637 | 0.7508 |
124
+ | No log | 7.3 | 146 | 0.6462 | 0.6404 | 0.6462 | 0.8038 |
125
+ | No log | 7.4 | 148 | 0.6732 | 0.6404 | 0.6732 | 0.8205 |
126
+ | No log | 7.5 | 150 | 0.5847 | 0.6543 | 0.5847 | 0.7647 |
127
+ | No log | 7.6 | 152 | 0.5600 | 0.6797 | 0.5600 | 0.7484 |
128
+ | No log | 7.7 | 154 | 0.5593 | 0.6998 | 0.5593 | 0.7478 |
129
+ | No log | 7.8 | 156 | 0.5551 | 0.6674 | 0.5551 | 0.7450 |
130
+ | No log | 7.9 | 158 | 0.8022 | 0.5713 | 0.8022 | 0.8956 |
131
+ | No log | 8.0 | 160 | 1.0105 | 0.5205 | 1.0105 | 1.0052 |
132
+ | No log | 8.1 | 162 | 0.9520 | 0.5771 | 0.9520 | 0.9757 |
133
+ | No log | 8.2 | 164 | 0.7014 | 0.6432 | 0.7014 | 0.8375 |
134
+ | No log | 8.3 | 166 | 0.5867 | 0.6438 | 0.5867 | 0.7660 |
135
+ | No log | 8.4 | 168 | 0.5898 | 0.7203 | 0.5898 | 0.7680 |
136
+ | No log | 8.5 | 170 | 0.6213 | 0.5994 | 0.6213 | 0.7882 |
137
+ | No log | 8.6 | 172 | 0.6565 | 0.6091 | 0.6565 | 0.8102 |
138
+ | No log | 8.7 | 174 | 0.6282 | 0.6256 | 0.6282 | 0.7926 |
139
+ | No log | 8.8 | 176 | 0.6264 | 0.7081 | 0.6264 | 0.7914 |
140
+ | No log | 8.9 | 178 | 0.6814 | 0.5912 | 0.6814 | 0.8255 |
141
+ | No log | 9.0 | 180 | 0.6982 | 0.5912 | 0.6982 | 0.8356 |
142
+ | No log | 9.1 | 182 | 0.6812 | 0.5912 | 0.6812 | 0.8253 |
143
+ | No log | 9.2 | 184 | 0.6179 | 0.6728 | 0.6179 | 0.7861 |
144
+ | No log | 9.3 | 186 | 0.5876 | 0.6262 | 0.5876 | 0.7665 |
145
+ | No log | 9.4 | 188 | 0.5700 | 0.6370 | 0.5700 | 0.7550 |
146
+ | No log | 9.5 | 190 | 0.5542 | 0.6908 | 0.5542 | 0.7444 |
147
+ | No log | 9.6 | 192 | 0.5673 | 0.6647 | 0.5673 | 0.7532 |
148
+ | No log | 9.7 | 194 | 0.5549 | 0.6990 | 0.5549 | 0.7449 |
149
+ | No log | 9.8 | 196 | 0.5318 | 0.7360 | 0.5318 | 0.7292 |
150
+ | No log | 9.9 | 198 | 0.5231 | 0.7272 | 0.5231 | 0.7232 |
151
+ | No log | 10.0 | 200 | 0.5389 | 0.6812 | 0.5389 | 0.7341 |
152
+ | No log | 10.1 | 202 | 0.5506 | 0.6854 | 0.5506 | 0.7420 |
153
+ | No log | 10.2 | 204 | 0.5306 | 0.7033 | 0.5306 | 0.7284 |
154
+ | No log | 10.3 | 206 | 0.5337 | 0.6954 | 0.5337 | 0.7305 |
155
+ | No log | 10.4 | 208 | 0.5164 | 0.7026 | 0.5164 | 0.7186 |
156
+ | No log | 10.5 | 210 | 0.5275 | 0.6240 | 0.5275 | 0.7263 |
157
+ | No log | 10.6 | 212 | 0.6996 | 0.6967 | 0.6996 | 0.8364 |
158
+ | No log | 10.7 | 214 | 0.7598 | 0.6744 | 0.7598 | 0.8717 |
159
+ | No log | 10.8 | 216 | 0.6202 | 0.6780 | 0.6202 | 0.7875 |
160
+ | No log | 10.9 | 218 | 0.5085 | 0.6764 | 0.5085 | 0.7131 |
161
+ | No log | 11.0 | 220 | 0.5198 | 0.7182 | 0.5198 | 0.7210 |
162
+ | No log | 11.1 | 222 | 0.5359 | 0.7384 | 0.5359 | 0.7321 |
163
+ | No log | 11.2 | 224 | 0.5120 | 0.7026 | 0.5120 | 0.7155 |
164
+ | No log | 11.3 | 226 | 0.5094 | 0.7064 | 0.5094 | 0.7137 |
165
+ | No log | 11.4 | 228 | 0.5158 | 0.7178 | 0.5158 | 0.7182 |
166
+ | No log | 11.5 | 230 | 0.5423 | 0.7259 | 0.5423 | 0.7364 |
167
+ | No log | 11.6 | 232 | 0.5528 | 0.7301 | 0.5528 | 0.7435 |
168
+ | No log | 11.7 | 234 | 0.5521 | 0.7450 | 0.5521 | 0.7431 |
169
+ | No log | 11.8 | 236 | 0.5396 | 0.7296 | 0.5396 | 0.7346 |
170
+ | No log | 11.9 | 238 | 0.5356 | 0.6938 | 0.5356 | 0.7318 |
171
+ | No log | 12.0 | 240 | 0.5473 | 0.6843 | 0.5473 | 0.7398 |
172
+ | No log | 12.1 | 242 | 0.5602 | 0.6525 | 0.5602 | 0.7485 |
173
+ | No log | 12.2 | 244 | 0.6071 | 0.6211 | 0.6071 | 0.7792 |
174
+ | No log | 12.3 | 246 | 0.7347 | 0.6069 | 0.7347 | 0.8571 |
175
+ | No log | 12.4 | 248 | 0.7643 | 0.6289 | 0.7643 | 0.8743 |
176
+ | No log | 12.5 | 250 | 0.6486 | 0.6461 | 0.6486 | 0.8054 |
177
+ | No log | 12.6 | 252 | 0.5462 | 0.7061 | 0.5462 | 0.7390 |
178
+ | No log | 12.7 | 254 | 0.5356 | 0.7266 | 0.5356 | 0.7319 |
179
+ | No log | 12.8 | 256 | 0.5420 | 0.7444 | 0.5420 | 0.7362 |
180
+ | No log | 12.9 | 258 | 0.5724 | 0.7191 | 0.5724 | 0.7566 |
181
+ | No log | 13.0 | 260 | 0.6169 | 0.6906 | 0.6169 | 0.7854 |
182
+ | No log | 13.1 | 262 | 0.6945 | 0.6988 | 0.6945 | 0.8334 |
183
+ | No log | 13.2 | 264 | 0.6599 | 0.7161 | 0.6599 | 0.8123 |
184
+ | No log | 13.3 | 266 | 0.5798 | 0.6476 | 0.5798 | 0.7614 |
185
+ | No log | 13.4 | 268 | 0.5930 | 0.6647 | 0.5930 | 0.7700 |
186
+ | No log | 13.5 | 270 | 0.5808 | 0.6703 | 0.5808 | 0.7621 |
187
+ | No log | 13.6 | 272 | 0.5698 | 0.6658 | 0.5698 | 0.7548 |
188
+ | No log | 13.7 | 274 | 0.5629 | 0.6517 | 0.5629 | 0.7503 |
189
+ | No log | 13.8 | 276 | 0.5594 | 0.6824 | 0.5594 | 0.7479 |
190
+ | No log | 13.9 | 278 | 0.5642 | 0.6919 | 0.5642 | 0.7511 |
191
+ | No log | 14.0 | 280 | 0.5958 | 0.5905 | 0.5958 | 0.7719 |
192
+ | No log | 14.1 | 282 | 0.6584 | 0.5816 | 0.6584 | 0.8114 |
193
+ | No log | 14.2 | 284 | 0.6661 | 0.5709 | 0.6661 | 0.8162 |
194
+ | No log | 14.3 | 286 | 0.5980 | 0.5694 | 0.5980 | 0.7733 |
195
+ | No log | 14.4 | 288 | 0.5347 | 0.6911 | 0.5347 | 0.7313 |
196
+ | No log | 14.5 | 290 | 0.5213 | 0.7450 | 0.5213 | 0.7220 |
197
+ | No log | 14.6 | 292 | 0.5188 | 0.7225 | 0.5188 | 0.7203 |
198
+ | No log | 14.7 | 294 | 0.5092 | 0.6940 | 0.5092 | 0.7136 |
199
+ | No log | 14.8 | 296 | 0.5881 | 0.6317 | 0.5881 | 0.7669 |
200
+ | No log | 14.9 | 298 | 0.6675 | 0.5961 | 0.6675 | 0.8170 |
201
+ | No log | 15.0 | 300 | 0.6267 | 0.5770 | 0.6267 | 0.7916 |
202
+ | No log | 15.1 | 302 | 0.5402 | 0.6858 | 0.5402 | 0.7350 |
203
+ | No log | 15.2 | 304 | 0.5660 | 0.6688 | 0.5660 | 0.7523 |
204
+ | No log | 15.3 | 306 | 0.6696 | 0.6170 | 0.6696 | 0.8183 |
205
+ | No log | 15.4 | 308 | 0.6688 | 0.6485 | 0.6688 | 0.8178 |
206
+ | No log | 15.5 | 310 | 0.5997 | 0.7122 | 0.5997 | 0.7744 |
207
+ | No log | 15.6 | 312 | 0.5983 | 0.6242 | 0.5983 | 0.7735 |
208
+ | No log | 15.7 | 314 | 0.7361 | 0.6076 | 0.7361 | 0.8580 |
209
+ | No log | 15.8 | 316 | 0.7486 | 0.6174 | 0.7486 | 0.8652 |
210
+ | No log | 15.9 | 318 | 0.6561 | 0.6380 | 0.6561 | 0.8100 |
211
+ | No log | 16.0 | 320 | 0.5652 | 0.6417 | 0.5652 | 0.7518 |
212
+ | No log | 16.1 | 322 | 0.5526 | 0.6681 | 0.5526 | 0.7433 |
213
+ | No log | 16.2 | 324 | 0.5892 | 0.6807 | 0.5892 | 0.7676 |
214
+ | No log | 16.3 | 326 | 0.6014 | 0.6916 | 0.6014 | 0.7755 |
215
+ | No log | 16.4 | 328 | 0.5734 | 0.6425 | 0.5734 | 0.7572 |
216
+ | No log | 16.5 | 330 | 0.5429 | 0.6629 | 0.5429 | 0.7368 |
217
+ | No log | 16.6 | 332 | 0.5610 | 0.6759 | 0.5610 | 0.7490 |
218
+ | No log | 16.7 | 334 | 0.6015 | 0.6194 | 0.6015 | 0.7756 |
219
+ | No log | 16.8 | 336 | 0.5919 | 0.6533 | 0.5919 | 0.7694 |
220
+ | No log | 16.9 | 338 | 0.5526 | 0.6227 | 0.5526 | 0.7434 |
221
+ | No log | 17.0 | 340 | 0.5358 | 0.6330 | 0.5358 | 0.7320 |
222
+ | No log | 17.1 | 342 | 0.5333 | 0.6433 | 0.5333 | 0.7303 |
223
+ | No log | 17.2 | 344 | 0.5314 | 0.6330 | 0.5314 | 0.7290 |
224
+ | No log | 17.3 | 346 | 0.5476 | 0.6745 | 0.5476 | 0.7400 |
225
+ | No log | 17.4 | 348 | 0.5492 | 0.6787 | 0.5492 | 0.7411 |
226
+ | No log | 17.5 | 350 | 0.5301 | 0.6460 | 0.5301 | 0.7281 |
227
+ | No log | 17.6 | 352 | 0.5449 | 0.6933 | 0.5449 | 0.7381 |
228
+ | No log | 17.7 | 354 | 0.5378 | 0.6933 | 0.5378 | 0.7333 |
229
+ | No log | 17.8 | 356 | 0.5192 | 0.6634 | 0.5192 | 0.7206 |
230
+ | No log | 17.9 | 358 | 0.5112 | 0.6634 | 0.5112 | 0.7150 |
231
+ | No log | 18.0 | 360 | 0.4922 | 0.7089 | 0.4922 | 0.7016 |
232
+ | No log | 18.1 | 362 | 0.4829 | 0.6978 | 0.4829 | 0.6949 |
233
+ | No log | 18.2 | 364 | 0.4813 | 0.7089 | 0.4813 | 0.6938 |
234
+ | No log | 18.3 | 366 | 0.4761 | 0.7089 | 0.4761 | 0.6900 |
235
+ | No log | 18.4 | 368 | 0.4711 | 0.7089 | 0.4711 | 0.6864 |
236
+ | No log | 18.5 | 370 | 0.4692 | 0.6978 | 0.4692 | 0.6850 |
237
+ | No log | 18.6 | 372 | 0.4814 | 0.6708 | 0.4814 | 0.6938 |
238
+ | No log | 18.7 | 374 | 0.5347 | 0.6648 | 0.5347 | 0.7313 |
239
+ | No log | 18.8 | 376 | 0.5901 | 0.6573 | 0.5901 | 0.7682 |
240
+ | No log | 18.9 | 378 | 0.5397 | 0.6906 | 0.5397 | 0.7346 |
241
+ | No log | 19.0 | 380 | 0.4715 | 0.7018 | 0.4715 | 0.6867 |
242
+ | No log | 19.1 | 382 | 0.4676 | 0.7057 | 0.4676 | 0.6838 |
243
+ | No log | 19.2 | 384 | 0.5487 | 0.7220 | 0.5487 | 0.7407 |
244
+ | No log | 19.3 | 386 | 0.5843 | 0.7021 | 0.5843 | 0.7644 |
245
+ | No log | 19.4 | 388 | 0.5550 | 0.6950 | 0.5550 | 0.7450 |
246
+ | No log | 19.5 | 390 | 0.5134 | 0.6499 | 0.5134 | 0.7165 |
247
+ | No log | 19.6 | 392 | 0.5042 | 0.6879 | 0.5042 | 0.7100 |
248
+ | No log | 19.7 | 394 | 0.5126 | 0.7206 | 0.5126 | 0.7159 |
249
+ | No log | 19.8 | 396 | 0.5443 | 0.6776 | 0.5443 | 0.7378 |
250
+ | No log | 19.9 | 398 | 0.5408 | 0.6776 | 0.5408 | 0.7354 |
251
+ | No log | 20.0 | 400 | 0.5624 | 0.6214 | 0.5624 | 0.7499 |
252
+ | No log | 20.1 | 402 | 0.5314 | 0.6906 | 0.5314 | 0.7290 |
253
+ | No log | 20.2 | 404 | 0.4832 | 0.7082 | 0.4832 | 0.6951 |
254
+ | No log | 20.3 | 406 | 0.5355 | 0.6762 | 0.5355 | 0.7318 |
255
+ | No log | 20.4 | 408 | 0.6064 | 0.6295 | 0.6064 | 0.7787 |
256
+ | No log | 20.5 | 410 | 0.6045 | 0.6101 | 0.6045 | 0.7775 |
257
+ | No log | 20.6 | 412 | 0.5490 | 0.6688 | 0.5490 | 0.7409 |
258
+ | No log | 20.7 | 414 | 0.4904 | 0.6919 | 0.4904 | 0.7003 |
259
+ | No log | 20.8 | 416 | 0.5285 | 0.6441 | 0.5285 | 0.7270 |
260
+ | No log | 20.9 | 418 | 0.5840 | 0.5627 | 0.5840 | 0.7642 |
261
+ | No log | 21.0 | 420 | 0.5521 | 0.6218 | 0.5521 | 0.7430 |
262
+ | No log | 21.1 | 422 | 0.4933 | 0.7172 | 0.4933 | 0.7024 |
263
+ | No log | 21.2 | 424 | 0.5007 | 0.6741 | 0.5007 | 0.7076 |
264
+ | No log | 21.3 | 426 | 0.5422 | 0.6620 | 0.5422 | 0.7363 |
265
+ | No log | 21.4 | 428 | 0.5636 | 0.6620 | 0.5636 | 0.7507 |
266
+ | No log | 21.5 | 430 | 0.5579 | 0.6663 | 0.5579 | 0.7469 |
267
+ | No log | 21.6 | 432 | 0.5444 | 0.6663 | 0.5444 | 0.7378 |
268
+ | No log | 21.7 | 434 | 0.5338 | 0.6715 | 0.5338 | 0.7306 |
269
+ | No log | 21.8 | 436 | 0.5235 | 0.6988 | 0.5235 | 0.7235 |
270
+ | No log | 21.9 | 438 | 0.5172 | 0.6988 | 0.5172 | 0.7192 |
271
+ | No log | 22.0 | 440 | 0.5093 | 0.6988 | 0.5093 | 0.7136 |
272
+ | No log | 22.1 | 442 | 0.5045 | 0.7154 | 0.5045 | 0.7103 |
273
+ | No log | 22.2 | 444 | 0.4948 | 0.6959 | 0.4948 | 0.7034 |
274
+ | No log | 22.3 | 446 | 0.4964 | 0.6874 | 0.4964 | 0.7045 |
275
+ | No log | 22.4 | 448 | 0.5023 | 0.7017 | 0.5023 | 0.7087 |
276
+ | No log | 22.5 | 450 | 0.5162 | 0.6919 | 0.5162 | 0.7184 |
277
+ | No log | 22.6 | 452 | 0.5364 | 0.6862 | 0.5364 | 0.7324 |
278
+ | No log | 22.7 | 454 | 0.5364 | 0.6741 | 0.5364 | 0.7324 |
279
+ | No log | 22.8 | 456 | 0.5168 | 0.6796 | 0.5168 | 0.7189 |
280
+ | No log | 22.9 | 458 | 0.5030 | 0.6958 | 0.5030 | 0.7092 |
281
+ | No log | 23.0 | 460 | 0.5052 | 0.6838 | 0.5052 | 0.7108 |
282
+ | No log | 23.1 | 462 | 0.5461 | 0.6669 | 0.5461 | 0.7390 |
283
+ | No log | 23.2 | 464 | 0.6456 | 0.6427 | 0.6456 | 0.8035 |
284
+ | No log | 23.3 | 466 | 0.7223 | 0.6568 | 0.7223 | 0.8499 |
285
+ | No log | 23.4 | 468 | 0.7227 | 0.6568 | 0.7227 | 0.8501 |
286
+ | No log | 23.5 | 470 | 0.6648 | 0.6851 | 0.6648 | 0.8153 |
287
+ | No log | 23.6 | 472 | 0.5642 | 0.6603 | 0.5642 | 0.7511 |
288
+ | No log | 23.7 | 474 | 0.4967 | 0.6627 | 0.4967 | 0.7048 |
289
+ | No log | 23.8 | 476 | 0.4951 | 0.6942 | 0.4951 | 0.7036 |
290
+ | No log | 23.9 | 478 | 0.5009 | 0.6606 | 0.5009 | 0.7077 |
291
+ | No log | 24.0 | 480 | 0.5026 | 0.6498 | 0.5026 | 0.7089 |
292
+ | No log | 24.1 | 482 | 0.5034 | 0.6498 | 0.5034 | 0.7095 |
293
+ | No log | 24.2 | 484 | 0.5101 | 0.6616 | 0.5101 | 0.7142 |
294
+ | No log | 24.3 | 486 | 0.5186 | 0.6777 | 0.5186 | 0.7201 |
295
+ | No log | 24.4 | 488 | 0.5360 | 0.6804 | 0.5360 | 0.7321 |
296
+ | No log | 24.5 | 490 | 0.5399 | 0.6701 | 0.5399 | 0.7348 |
297
+ | No log | 24.6 | 492 | 0.5578 | 0.6525 | 0.5578 | 0.7469 |
298
+ | No log | 24.7 | 494 | 0.5792 | 0.6317 | 0.5792 | 0.7611 |
299
+ | No log | 24.8 | 496 | 0.6081 | 0.6246 | 0.6081 | 0.7798 |
300
+ | No log | 24.9 | 498 | 0.6485 | 0.5595 | 0.6485 | 0.8053 |
301
+ | 0.2681 | 25.0 | 500 | 0.5852 | 0.6341 | 0.5852 | 0.7650 |
302
+ | 0.2681 | 25.1 | 502 | 0.5235 | 0.6256 | 0.5235 | 0.7236 |
303
+ | 0.2681 | 25.2 | 504 | 0.5179 | 0.6451 | 0.5179 | 0.7196 |
304
+ | 0.2681 | 25.3 | 506 | 0.5254 | 0.7059 | 0.5254 | 0.7248 |
305
+ | 0.2681 | 25.4 | 508 | 0.5127 | 0.6779 | 0.5127 | 0.7160 |
306
+ | 0.2681 | 25.5 | 510 | 0.5168 | 0.6942 | 0.5168 | 0.7189 |
307
+ | 0.2681 | 25.6 | 512 | 0.5243 | 0.6317 | 0.5243 | 0.7241 |
308
+ | 0.2681 | 25.7 | 514 | 0.5196 | 0.6353 | 0.5196 | 0.7208 |
309
+ | 0.2681 | 25.8 | 516 | 0.5018 | 0.7051 | 0.5018 | 0.7084 |
310
+ | 0.2681 | 25.9 | 518 | 0.5066 | 0.6993 | 0.5066 | 0.7118 |
311
+ | 0.2681 | 26.0 | 520 | 0.5383 | 0.6968 | 0.5383 | 0.7337 |
312
+ | 0.2681 | 26.1 | 522 | 0.5589 | 0.6968 | 0.5589 | 0.7476 |
313
+ | 0.2681 | 26.2 | 524 | 0.5337 | 0.6968 | 0.5337 | 0.7306 |
314
+ | 0.2681 | 26.3 | 526 | 0.5000 | 0.7001 | 0.5000 | 0.7071 |
315
+ | 0.2681 | 26.4 | 528 | 0.5206 | 0.7139 | 0.5206 | 0.7215 |
316
+ | 0.2681 | 26.5 | 530 | 0.5930 | 0.6214 | 0.5930 | 0.7701 |
317
+ | 0.2681 | 26.6 | 532 | 0.6153 | 0.6214 | 0.6153 | 0.7844 |
318
+ | 0.2681 | 26.7 | 534 | 0.5559 | 0.6461 | 0.5559 | 0.7456 |
319
+ | 0.2681 | 26.8 | 536 | 0.5084 | 0.6658 | 0.5084 | 0.7130 |
320
+ | 0.2681 | 26.9 | 538 | 0.5222 | 0.6849 | 0.5222 | 0.7226 |
321
+ | 0.2681 | 27.0 | 540 | 0.5383 | 0.6664 | 0.5383 | 0.7337 |
322
+ | 0.2681 | 27.1 | 542 | 0.5468 | 0.6276 | 0.5468 | 0.7395 |
323
+ | 0.2681 | 27.2 | 544 | 0.5512 | 0.6073 | 0.5512 | 0.7424 |
324
+ | 0.2681 | 27.3 | 546 | 0.5437 | 0.6407 | 0.5437 | 0.7373 |
325
+ | 0.2681 | 27.4 | 548 | 0.5443 | 0.6175 | 0.5443 | 0.7378 |
326
+ | 0.2681 | 27.5 | 550 | 0.5498 | 0.6073 | 0.5498 | 0.7415 |
327
+ | 0.2681 | 27.6 | 552 | 0.5528 | 0.6073 | 0.5528 | 0.7435 |
328
+ | 0.2681 | 27.7 | 554 | 0.5611 | 0.6073 | 0.5611 | 0.7490 |
329
+ | 0.2681 | 27.8 | 556 | 0.5603 | 0.6073 | 0.5603 | 0.7485 |
330
+
331
+
332
+ ### Framework versions
333
+
334
+ - Transformers 4.44.2
335
+ - Pytorch 2.4.0+cu118
336
+ - Datasets 2.21.0
337
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4056b3c0030c23c3199ef53231ceb3391026619c8e2f4b03edbf5d37e9d69e3f
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2aed87c49e7be3ba2fb6fd4e703690c6b746e68d288ecc88be37e9783060d85
3
+ size 5240