MayBashendy commited on
Commit
fb11c43
·
verified ·
1 Parent(s): 613427e

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +319 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k9_task2_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k9_task2_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6770
19
+ - Qwk: 0.4036
20
+ - Mse: 0.6770
21
+ - Rmse: 0.8228
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0417 | 2 | 4.3763 | -0.0241 | 4.3763 | 2.0920 |
53
+ | No log | 0.0833 | 4 | 2.5518 | -0.0214 | 2.5518 | 1.5974 |
54
+ | No log | 0.125 | 6 | 1.7974 | -0.0379 | 1.7974 | 1.3407 |
55
+ | No log | 0.1667 | 8 | 1.6811 | -0.0766 | 1.6811 | 1.2966 |
56
+ | No log | 0.2083 | 10 | 1.2895 | 0.0278 | 1.2895 | 1.1355 |
57
+ | No log | 0.25 | 12 | 0.9071 | 0.0152 | 0.9071 | 0.9524 |
58
+ | No log | 0.2917 | 14 | 0.7998 | 0.2023 | 0.7998 | 0.8943 |
59
+ | No log | 0.3333 | 16 | 0.8628 | 0.1547 | 0.8628 | 0.9289 |
60
+ | No log | 0.375 | 18 | 0.9525 | 0.0342 | 0.9525 | 0.9760 |
61
+ | No log | 0.4167 | 20 | 0.9968 | -0.0459 | 0.9968 | 0.9984 |
62
+ | No log | 0.4583 | 22 | 1.0992 | -0.0007 | 1.0992 | 1.0484 |
63
+ | No log | 0.5 | 24 | 0.9171 | 0.1080 | 0.9171 | 0.9577 |
64
+ | No log | 0.5417 | 26 | 0.8036 | 0.1629 | 0.8036 | 0.8965 |
65
+ | No log | 0.5833 | 28 | 0.8193 | 0.2164 | 0.8193 | 0.9052 |
66
+ | No log | 0.625 | 30 | 0.9284 | 0.1018 | 0.9284 | 0.9635 |
67
+ | No log | 0.6667 | 32 | 0.9444 | 0.1126 | 0.9444 | 0.9718 |
68
+ | No log | 0.7083 | 34 | 0.8649 | 0.1550 | 0.8649 | 0.9300 |
69
+ | No log | 0.75 | 36 | 0.7703 | 0.2954 | 0.7703 | 0.8777 |
70
+ | No log | 0.7917 | 38 | 0.7510 | 0.1926 | 0.7510 | 0.8666 |
71
+ | No log | 0.8333 | 40 | 0.7570 | 0.2261 | 0.7570 | 0.8701 |
72
+ | No log | 0.875 | 42 | 0.7597 | 0.2041 | 0.7597 | 0.8716 |
73
+ | No log | 0.9167 | 44 | 0.7696 | 0.2125 | 0.7696 | 0.8773 |
74
+ | No log | 0.9583 | 46 | 0.7838 | 0.2567 | 0.7838 | 0.8853 |
75
+ | No log | 1.0 | 48 | 0.7830 | 0.2769 | 0.7830 | 0.8849 |
76
+ | No log | 1.0417 | 50 | 0.8013 | 0.1694 | 0.8013 | 0.8951 |
77
+ | No log | 1.0833 | 52 | 0.7731 | 0.2691 | 0.7731 | 0.8793 |
78
+ | No log | 1.125 | 54 | 0.8291 | 0.1590 | 0.8291 | 0.9106 |
79
+ | No log | 1.1667 | 56 | 0.9941 | 0.2039 | 0.9941 | 0.9970 |
80
+ | No log | 1.2083 | 58 | 0.8577 | 0.2499 | 0.8577 | 0.9261 |
81
+ | No log | 1.25 | 60 | 0.6666 | 0.4292 | 0.6666 | 0.8164 |
82
+ | No log | 1.2917 | 62 | 0.6766 | 0.4153 | 0.6766 | 0.8225 |
83
+ | No log | 1.3333 | 64 | 0.6739 | 0.4345 | 0.6739 | 0.8209 |
84
+ | No log | 1.375 | 66 | 0.8257 | 0.3266 | 0.8257 | 0.9087 |
85
+ | No log | 1.4167 | 68 | 0.7408 | 0.3257 | 0.7408 | 0.8607 |
86
+ | No log | 1.4583 | 70 | 0.6725 | 0.4677 | 0.6725 | 0.8201 |
87
+ | No log | 1.5 | 72 | 0.8568 | 0.2649 | 0.8568 | 0.9256 |
88
+ | No log | 1.5417 | 74 | 0.8973 | 0.2767 | 0.8973 | 0.9472 |
89
+ | No log | 1.5833 | 76 | 0.6858 | 0.4710 | 0.6858 | 0.8281 |
90
+ | No log | 1.625 | 78 | 0.7562 | 0.4394 | 0.7562 | 0.8696 |
91
+ | No log | 1.6667 | 80 | 0.7523 | 0.4350 | 0.7523 | 0.8674 |
92
+ | No log | 1.7083 | 82 | 0.6980 | 0.4770 | 0.6980 | 0.8355 |
93
+ | No log | 1.75 | 84 | 0.7730 | 0.3553 | 0.7730 | 0.8792 |
94
+ | No log | 1.7917 | 86 | 0.7739 | 0.3240 | 0.7739 | 0.8797 |
95
+ | No log | 1.8333 | 88 | 0.6665 | 0.4467 | 0.6665 | 0.8164 |
96
+ | No log | 1.875 | 90 | 0.7671 | 0.4972 | 0.7671 | 0.8758 |
97
+ | No log | 1.9167 | 92 | 0.6957 | 0.4493 | 0.6957 | 0.8341 |
98
+ | No log | 1.9583 | 94 | 0.6830 | 0.5031 | 0.6830 | 0.8264 |
99
+ | No log | 2.0 | 96 | 0.6613 | 0.4708 | 0.6613 | 0.8132 |
100
+ | No log | 2.0417 | 98 | 0.7047 | 0.4664 | 0.7047 | 0.8395 |
101
+ | No log | 2.0833 | 100 | 0.7138 | 0.4500 | 0.7138 | 0.8449 |
102
+ | No log | 2.125 | 102 | 0.6829 | 0.4111 | 0.6829 | 0.8264 |
103
+ | No log | 2.1667 | 104 | 0.7300 | 0.3936 | 0.7300 | 0.8544 |
104
+ | No log | 2.2083 | 106 | 0.7319 | 0.3741 | 0.7319 | 0.8555 |
105
+ | No log | 2.25 | 108 | 0.7594 | 0.4012 | 0.7594 | 0.8715 |
106
+ | No log | 2.2917 | 110 | 0.8482 | 0.4625 | 0.8482 | 0.9210 |
107
+ | No log | 2.3333 | 112 | 0.7790 | 0.4267 | 0.7790 | 0.8826 |
108
+ | No log | 2.375 | 114 | 0.7420 | 0.4344 | 0.7420 | 0.8614 |
109
+ | No log | 2.4167 | 116 | 0.7450 | 0.4243 | 0.7450 | 0.8631 |
110
+ | No log | 2.4583 | 118 | 0.8100 | 0.5 | 0.8100 | 0.9000 |
111
+ | No log | 2.5 | 120 | 0.7595 | 0.4268 | 0.7595 | 0.8715 |
112
+ | No log | 2.5417 | 122 | 0.7847 | 0.4336 | 0.7847 | 0.8858 |
113
+ | No log | 2.5833 | 124 | 0.8454 | 0.3721 | 0.8454 | 0.9195 |
114
+ | No log | 2.625 | 126 | 0.9016 | 0.3498 | 0.9016 | 0.9495 |
115
+ | No log | 2.6667 | 128 | 0.6546 | 0.4102 | 0.6546 | 0.8090 |
116
+ | No log | 2.7083 | 130 | 0.9167 | 0.4554 | 0.9167 | 0.9574 |
117
+ | No log | 2.75 | 132 | 0.9086 | 0.4568 | 0.9086 | 0.9532 |
118
+ | No log | 2.7917 | 134 | 0.6499 | 0.4209 | 0.6499 | 0.8061 |
119
+ | No log | 2.8333 | 136 | 0.6471 | 0.4006 | 0.6471 | 0.8044 |
120
+ | No log | 2.875 | 138 | 0.6925 | 0.4192 | 0.6925 | 0.8322 |
121
+ | No log | 2.9167 | 140 | 0.6870 | 0.4560 | 0.6870 | 0.8289 |
122
+ | No log | 2.9583 | 142 | 0.6520 | 0.4219 | 0.6520 | 0.8075 |
123
+ | No log | 3.0 | 144 | 0.6578 | 0.4705 | 0.6578 | 0.8111 |
124
+ | No log | 3.0417 | 146 | 0.6517 | 0.4483 | 0.6517 | 0.8073 |
125
+ | No log | 3.0833 | 148 | 0.6509 | 0.4652 | 0.6509 | 0.8068 |
126
+ | No log | 3.125 | 150 | 0.6599 | 0.4265 | 0.6599 | 0.8124 |
127
+ | No log | 3.1667 | 152 | 0.6971 | 0.4719 | 0.6971 | 0.8349 |
128
+ | No log | 3.2083 | 154 | 0.8255 | 0.3920 | 0.8255 | 0.9086 |
129
+ | No log | 3.25 | 156 | 0.6865 | 0.4837 | 0.6865 | 0.8286 |
130
+ | No log | 3.2917 | 158 | 0.6565 | 0.4615 | 0.6565 | 0.8103 |
131
+ | No log | 3.3333 | 160 | 0.6561 | 0.5159 | 0.6561 | 0.8100 |
132
+ | No log | 3.375 | 162 | 0.6347 | 0.5216 | 0.6347 | 0.7967 |
133
+ | No log | 3.4167 | 164 | 0.6688 | 0.3936 | 0.6688 | 0.8178 |
134
+ | No log | 3.4583 | 166 | 0.7227 | 0.4073 | 0.7227 | 0.8501 |
135
+ | No log | 3.5 | 168 | 0.6802 | 0.4346 | 0.6802 | 0.8247 |
136
+ | No log | 3.5417 | 170 | 0.6419 | 0.4757 | 0.6419 | 0.8012 |
137
+ | No log | 3.5833 | 172 | 0.6659 | 0.4606 | 0.6659 | 0.8160 |
138
+ | No log | 3.625 | 174 | 0.6612 | 0.4693 | 0.6612 | 0.8131 |
139
+ | No log | 3.6667 | 176 | 0.9147 | 0.4508 | 0.9147 | 0.9564 |
140
+ | No log | 3.7083 | 178 | 0.9688 | 0.4311 | 0.9688 | 0.9843 |
141
+ | No log | 3.75 | 180 | 0.8884 | 0.4685 | 0.8884 | 0.9425 |
142
+ | No log | 3.7917 | 182 | 0.6974 | 0.4672 | 0.6974 | 0.8351 |
143
+ | No log | 3.8333 | 184 | 0.6822 | 0.4710 | 0.6822 | 0.8260 |
144
+ | No log | 3.875 | 186 | 0.7263 | 0.4732 | 0.7263 | 0.8522 |
145
+ | No log | 3.9167 | 188 | 0.6827 | 0.4294 | 0.6827 | 0.8263 |
146
+ | No log | 3.9583 | 190 | 0.7398 | 0.4927 | 0.7398 | 0.8601 |
147
+ | No log | 4.0 | 192 | 0.7056 | 0.5028 | 0.7056 | 0.8400 |
148
+ | No log | 4.0417 | 194 | 0.6446 | 0.4303 | 0.6446 | 0.8029 |
149
+ | No log | 4.0833 | 196 | 0.6629 | 0.5071 | 0.6629 | 0.8142 |
150
+ | No log | 4.125 | 198 | 0.6690 | 0.4871 | 0.6690 | 0.8179 |
151
+ | No log | 4.1667 | 200 | 0.6647 | 0.4867 | 0.6647 | 0.8153 |
152
+ | No log | 4.2083 | 202 | 0.6469 | 0.4999 | 0.6469 | 0.8043 |
153
+ | No log | 4.25 | 204 | 0.6364 | 0.4590 | 0.6364 | 0.7977 |
154
+ | No log | 4.2917 | 206 | 0.6464 | 0.4948 | 0.6464 | 0.8040 |
155
+ | No log | 4.3333 | 208 | 0.6253 | 0.4820 | 0.6253 | 0.7908 |
156
+ | No log | 4.375 | 210 | 0.6426 | 0.3894 | 0.6426 | 0.8016 |
157
+ | No log | 4.4167 | 212 | 0.6661 | 0.5153 | 0.6661 | 0.8161 |
158
+ | No log | 4.4583 | 214 | 0.6897 | 0.4859 | 0.6897 | 0.8305 |
159
+ | No log | 4.5 | 216 | 0.6889 | 0.4816 | 0.6889 | 0.8300 |
160
+ | No log | 4.5417 | 218 | 0.6517 | 0.4779 | 0.6517 | 0.8073 |
161
+ | No log | 4.5833 | 220 | 0.6466 | 0.4228 | 0.6466 | 0.8041 |
162
+ | No log | 4.625 | 222 | 0.6280 | 0.4738 | 0.6280 | 0.7924 |
163
+ | No log | 4.6667 | 224 | 0.7118 | 0.4697 | 0.7118 | 0.8437 |
164
+ | No log | 4.7083 | 226 | 0.8949 | 0.3270 | 0.8949 | 0.9460 |
165
+ | No log | 4.75 | 228 | 0.8942 | 0.3277 | 0.8942 | 0.9456 |
166
+ | No log | 4.7917 | 230 | 0.7210 | 0.4266 | 0.7210 | 0.8491 |
167
+ | No log | 4.8333 | 232 | 0.6333 | 0.4399 | 0.6333 | 0.7958 |
168
+ | No log | 4.875 | 234 | 0.6414 | 0.4788 | 0.6414 | 0.8009 |
169
+ | No log | 4.9167 | 236 | 0.6446 | 0.4945 | 0.6446 | 0.8028 |
170
+ | No log | 4.9583 | 238 | 0.7178 | 0.4954 | 0.7178 | 0.8472 |
171
+ | No log | 5.0 | 240 | 0.6737 | 0.4959 | 0.6737 | 0.8208 |
172
+ | No log | 5.0417 | 242 | 0.6449 | 0.4269 | 0.6449 | 0.8031 |
173
+ | No log | 5.0833 | 244 | 0.6975 | 0.4186 | 0.6975 | 0.8352 |
174
+ | No log | 5.125 | 246 | 0.6599 | 0.4655 | 0.6599 | 0.8124 |
175
+ | No log | 5.1667 | 248 | 0.6665 | 0.4526 | 0.6665 | 0.8164 |
176
+ | No log | 5.2083 | 250 | 0.6515 | 0.4749 | 0.6515 | 0.8071 |
177
+ | No log | 5.25 | 252 | 0.6534 | 0.4643 | 0.6534 | 0.8083 |
178
+ | No log | 5.2917 | 254 | 0.6834 | 0.4926 | 0.6834 | 0.8267 |
179
+ | No log | 5.3333 | 256 | 0.6818 | 0.5133 | 0.6818 | 0.8257 |
180
+ | No log | 5.375 | 258 | 0.6414 | 0.3941 | 0.6414 | 0.8009 |
181
+ | No log | 5.4167 | 260 | 0.6617 | 0.4215 | 0.6617 | 0.8134 |
182
+ | No log | 5.4583 | 262 | 0.6756 | 0.4151 | 0.6756 | 0.8220 |
183
+ | No log | 5.5 | 264 | 0.6594 | 0.4224 | 0.6594 | 0.8120 |
184
+ | No log | 5.5417 | 266 | 0.6808 | 0.4721 | 0.6808 | 0.8251 |
185
+ | No log | 5.5833 | 268 | 0.6695 | 0.4217 | 0.6695 | 0.8182 |
186
+ | No log | 5.625 | 270 | 0.6828 | 0.4598 | 0.6828 | 0.8263 |
187
+ | No log | 5.6667 | 272 | 0.6745 | 0.4238 | 0.6745 | 0.8213 |
188
+ | No log | 5.7083 | 274 | 0.6502 | 0.3667 | 0.6502 | 0.8064 |
189
+ | No log | 5.75 | 276 | 0.6983 | 0.3714 | 0.6983 | 0.8356 |
190
+ | No log | 5.7917 | 278 | 0.7511 | 0.3900 | 0.7511 | 0.8667 |
191
+ | No log | 5.8333 | 280 | 0.6846 | 0.4455 | 0.6846 | 0.8274 |
192
+ | No log | 5.875 | 282 | 0.6444 | 0.3742 | 0.6444 | 0.8027 |
193
+ | No log | 5.9167 | 284 | 0.6587 | 0.3543 | 0.6587 | 0.8116 |
194
+ | No log | 5.9583 | 286 | 0.6750 | 0.4119 | 0.6750 | 0.8216 |
195
+ | No log | 6.0 | 288 | 0.6326 | 0.3724 | 0.6326 | 0.7954 |
196
+ | No log | 6.0417 | 290 | 0.6728 | 0.4488 | 0.6728 | 0.8203 |
197
+ | No log | 6.0833 | 292 | 0.8701 | 0.3875 | 0.8701 | 0.9328 |
198
+ | No log | 6.125 | 294 | 0.9125 | 0.4140 | 0.9125 | 0.9552 |
199
+ | No log | 6.1667 | 296 | 0.7822 | 0.4543 | 0.7822 | 0.8844 |
200
+ | No log | 6.2083 | 298 | 0.6478 | 0.4135 | 0.6478 | 0.8049 |
201
+ | No log | 6.25 | 300 | 0.6943 | 0.4541 | 0.6943 | 0.8333 |
202
+ | No log | 6.2917 | 302 | 0.7041 | 0.4339 | 0.7041 | 0.8391 |
203
+ | No log | 6.3333 | 304 | 0.6826 | 0.4577 | 0.6826 | 0.8262 |
204
+ | No log | 6.375 | 306 | 0.6791 | 0.4533 | 0.6791 | 0.8241 |
205
+ | No log | 6.4167 | 308 | 0.7367 | 0.4851 | 0.7367 | 0.8583 |
206
+ | No log | 6.4583 | 310 | 0.7199 | 0.4411 | 0.7199 | 0.8484 |
207
+ | No log | 6.5 | 312 | 0.6338 | 0.4476 | 0.6338 | 0.7961 |
208
+ | No log | 6.5417 | 314 | 0.6036 | 0.4083 | 0.6036 | 0.7769 |
209
+ | No log | 6.5833 | 316 | 0.6714 | 0.4948 | 0.6714 | 0.8194 |
210
+ | No log | 6.625 | 318 | 0.6745 | 0.5070 | 0.6745 | 0.8213 |
211
+ | No log | 6.6667 | 320 | 0.6225 | 0.4793 | 0.6225 | 0.7890 |
212
+ | No log | 6.7083 | 322 | 0.7083 | 0.5044 | 0.7083 | 0.8416 |
213
+ | No log | 6.75 | 324 | 0.8051 | 0.5148 | 0.8051 | 0.8973 |
214
+ | No log | 6.7917 | 326 | 0.7739 | 0.5025 | 0.7739 | 0.8797 |
215
+ | No log | 6.8333 | 328 | 0.6669 | 0.4882 | 0.6669 | 0.8166 |
216
+ | No log | 6.875 | 330 | 0.6424 | 0.4443 | 0.6424 | 0.8015 |
217
+ | No log | 6.9167 | 332 | 0.6510 | 0.4540 | 0.6510 | 0.8069 |
218
+ | No log | 6.9583 | 334 | 0.6745 | 0.4690 | 0.6745 | 0.8212 |
219
+ | No log | 7.0 | 336 | 0.7856 | 0.5038 | 0.7856 | 0.8863 |
220
+ | No log | 7.0417 | 338 | 0.8264 | 0.4427 | 0.8264 | 0.9091 |
221
+ | No log | 7.0833 | 340 | 0.7710 | 0.4316 | 0.7710 | 0.8780 |
222
+ | No log | 7.125 | 342 | 0.6960 | 0.3726 | 0.6960 | 0.8343 |
223
+ | No log | 7.1667 | 344 | 0.6677 | 0.3265 | 0.6677 | 0.8171 |
224
+ | No log | 7.2083 | 346 | 0.6800 | 0.3656 | 0.6800 | 0.8246 |
225
+ | No log | 7.25 | 348 | 0.7299 | 0.3907 | 0.7299 | 0.8543 |
226
+ | No log | 7.2917 | 350 | 0.7783 | 0.3898 | 0.7783 | 0.8822 |
227
+ | No log | 7.3333 | 352 | 0.7414 | 0.35 | 0.7414 | 0.8610 |
228
+ | No log | 7.375 | 354 | 0.7091 | 0.3713 | 0.7091 | 0.8421 |
229
+ | No log | 7.4167 | 356 | 0.6792 | 0.3830 | 0.6792 | 0.8241 |
230
+ | No log | 7.4583 | 358 | 0.6772 | 0.3860 | 0.6772 | 0.8229 |
231
+ | No log | 7.5 | 360 | 0.6880 | 0.4109 | 0.6880 | 0.8295 |
232
+ | No log | 7.5417 | 362 | 0.6927 | 0.4296 | 0.6927 | 0.8323 |
233
+ | No log | 7.5833 | 364 | 0.6479 | 0.4191 | 0.6479 | 0.8049 |
234
+ | No log | 7.625 | 366 | 0.6354 | 0.4072 | 0.6354 | 0.7971 |
235
+ | No log | 7.6667 | 368 | 0.6292 | 0.3868 | 0.6292 | 0.7932 |
236
+ | No log | 7.7083 | 370 | 0.6481 | 0.4620 | 0.6481 | 0.8051 |
237
+ | No log | 7.75 | 372 | 0.7438 | 0.4594 | 0.7438 | 0.8624 |
238
+ | No log | 7.7917 | 374 | 0.7531 | 0.4363 | 0.7531 | 0.8678 |
239
+ | No log | 7.8333 | 376 | 0.6905 | 0.4803 | 0.6905 | 0.8310 |
240
+ | No log | 7.875 | 378 | 0.6215 | 0.4184 | 0.6215 | 0.7883 |
241
+ | No log | 7.9167 | 380 | 0.6153 | 0.3876 | 0.6153 | 0.7844 |
242
+ | No log | 7.9583 | 382 | 0.6151 | 0.3876 | 0.6151 | 0.7843 |
243
+ | No log | 8.0 | 384 | 0.6142 | 0.3736 | 0.6142 | 0.7837 |
244
+ | No log | 8.0417 | 386 | 0.6417 | 0.4630 | 0.6417 | 0.8010 |
245
+ | No log | 8.0833 | 388 | 0.7207 | 0.4555 | 0.7207 | 0.8489 |
246
+ | No log | 8.125 | 390 | 0.7218 | 0.4709 | 0.7218 | 0.8496 |
247
+ | No log | 8.1667 | 392 | 0.6508 | 0.5179 | 0.6508 | 0.8067 |
248
+ | No log | 8.2083 | 394 | 0.6181 | 0.4368 | 0.6181 | 0.7862 |
249
+ | No log | 8.25 | 396 | 0.6365 | 0.4714 | 0.6365 | 0.7978 |
250
+ | No log | 8.2917 | 398 | 0.6853 | 0.4217 | 0.6853 | 0.8278 |
251
+ | No log | 8.3333 | 400 | 0.6693 | 0.4404 | 0.6693 | 0.8181 |
252
+ | No log | 8.375 | 402 | 0.6208 | 0.4375 | 0.6208 | 0.7879 |
253
+ | No log | 8.4167 | 404 | 0.6278 | 0.4452 | 0.6278 | 0.7923 |
254
+ | No log | 8.4583 | 406 | 0.6528 | 0.4816 | 0.6528 | 0.8079 |
255
+ | No log | 8.5 | 408 | 0.6371 | 0.4364 | 0.6371 | 0.7982 |
256
+ | No log | 8.5417 | 410 | 0.6256 | 0.4262 | 0.6256 | 0.7909 |
257
+ | No log | 8.5833 | 412 | 0.6252 | 0.4231 | 0.6252 | 0.7907 |
258
+ | No log | 8.625 | 414 | 0.6253 | 0.4032 | 0.6253 | 0.7908 |
259
+ | No log | 8.6667 | 416 | 0.6402 | 0.4668 | 0.6402 | 0.8001 |
260
+ | No log | 8.7083 | 418 | 0.6651 | 0.4304 | 0.6651 | 0.8156 |
261
+ | No log | 8.75 | 420 | 0.6750 | 0.4382 | 0.6750 | 0.8216 |
262
+ | No log | 8.7917 | 422 | 0.6937 | 0.4206 | 0.6937 | 0.8329 |
263
+ | No log | 8.8333 | 424 | 0.6985 | 0.4206 | 0.6985 | 0.8357 |
264
+ | No log | 8.875 | 426 | 0.6869 | 0.4476 | 0.6869 | 0.8288 |
265
+ | No log | 8.9167 | 428 | 0.7012 | 0.5124 | 0.7012 | 0.8374 |
266
+ | No log | 8.9583 | 430 | 0.6786 | 0.4135 | 0.6786 | 0.8238 |
267
+ | No log | 9.0 | 432 | 0.6528 | 0.4564 | 0.6528 | 0.8080 |
268
+ | No log | 9.0417 | 434 | 0.6716 | 0.4268 | 0.6716 | 0.8195 |
269
+ | No log | 9.0833 | 436 | 0.6617 | 0.4242 | 0.6617 | 0.8134 |
270
+ | No log | 9.125 | 438 | 0.6337 | 0.4328 | 0.6337 | 0.7960 |
271
+ | No log | 9.1667 | 440 | 0.6261 | 0.4643 | 0.6261 | 0.7913 |
272
+ | No log | 9.2083 | 442 | 0.6307 | 0.4177 | 0.6307 | 0.7941 |
273
+ | No log | 9.25 | 444 | 0.6208 | 0.4653 | 0.6208 | 0.7879 |
274
+ | No log | 9.2917 | 446 | 0.6156 | 0.4576 | 0.6156 | 0.7846 |
275
+ | No log | 9.3333 | 448 | 0.6152 | 0.3830 | 0.6152 | 0.7844 |
276
+ | No log | 9.375 | 450 | 0.6229 | 0.3967 | 0.6229 | 0.7892 |
277
+ | No log | 9.4167 | 452 | 0.6081 | 0.4302 | 0.6081 | 0.7798 |
278
+ | No log | 9.4583 | 454 | 0.6170 | 0.4391 | 0.6170 | 0.7855 |
279
+ | No log | 9.5 | 456 | 0.6390 | 0.5144 | 0.6390 | 0.7994 |
280
+ | No log | 9.5417 | 458 | 0.6248 | 0.4416 | 0.6248 | 0.7904 |
281
+ | No log | 9.5833 | 460 | 0.6212 | 0.4434 | 0.6212 | 0.7882 |
282
+ | No log | 9.625 | 462 | 0.6288 | 0.4440 | 0.6288 | 0.7930 |
283
+ | No log | 9.6667 | 464 | 0.6385 | 0.4476 | 0.6385 | 0.7991 |
284
+ | No log | 9.7083 | 466 | 0.6408 | 0.4263 | 0.6408 | 0.8005 |
285
+ | No log | 9.75 | 468 | 0.6558 | 0.3755 | 0.6558 | 0.8098 |
286
+ | No log | 9.7917 | 470 | 0.6835 | 0.4341 | 0.6835 | 0.8267 |
287
+ | No log | 9.8333 | 472 | 0.6657 | 0.3587 | 0.6657 | 0.8159 |
288
+ | No log | 9.875 | 474 | 0.6531 | 0.4277 | 0.6531 | 0.8082 |
289
+ | No log | 9.9167 | 476 | 0.6569 | 0.4177 | 0.6569 | 0.8105 |
290
+ | No log | 9.9583 | 478 | 0.7014 | 0.4848 | 0.7014 | 0.8375 |
291
+ | No log | 10.0 | 480 | 0.7876 | 0.5323 | 0.7876 | 0.8874 |
292
+ | No log | 10.0417 | 482 | 0.8302 | 0.4908 | 0.8302 | 0.9111 |
293
+ | No log | 10.0833 | 484 | 0.7640 | 0.4862 | 0.7640 | 0.8741 |
294
+ | No log | 10.125 | 486 | 0.6811 | 0.4384 | 0.6811 | 0.8253 |
295
+ | No log | 10.1667 | 488 | 0.6621 | 0.3904 | 0.6621 | 0.8137 |
296
+ | No log | 10.2083 | 490 | 0.6894 | 0.4907 | 0.6894 | 0.8303 |
297
+ | No log | 10.25 | 492 | 0.7379 | 0.4874 | 0.7379 | 0.8590 |
298
+ | No log | 10.2917 | 494 | 0.8079 | 0.4792 | 0.8079 | 0.8988 |
299
+ | No log | 10.3333 | 496 | 0.7725 | 0.4699 | 0.7725 | 0.8789 |
300
+ | No log | 10.375 | 498 | 0.6927 | 0.4717 | 0.6927 | 0.8323 |
301
+ | 0.339 | 10.4167 | 500 | 0.6361 | 0.4312 | 0.6361 | 0.7976 |
302
+ | 0.339 | 10.4583 | 502 | 0.6318 | 0.4373 | 0.6318 | 0.7949 |
303
+ | 0.339 | 10.5 | 504 | 0.6471 | 0.4469 | 0.6471 | 0.8044 |
304
+ | 0.339 | 10.5417 | 506 | 0.6775 | 0.4854 | 0.6775 | 0.8231 |
305
+ | 0.339 | 10.5833 | 508 | 0.7012 | 0.4993 | 0.7012 | 0.8374 |
306
+ | 0.339 | 10.625 | 510 | 0.6993 | 0.4741 | 0.6993 | 0.8363 |
307
+ | 0.339 | 10.6667 | 512 | 0.6727 | 0.4289 | 0.6727 | 0.8202 |
308
+ | 0.339 | 10.7083 | 514 | 0.6612 | 0.4308 | 0.6612 | 0.8131 |
309
+ | 0.339 | 10.75 | 516 | 0.6520 | 0.3886 | 0.6520 | 0.8075 |
310
+ | 0.339 | 10.7917 | 518 | 0.6534 | 0.3922 | 0.6534 | 0.8083 |
311
+ | 0.339 | 10.8333 | 520 | 0.6770 | 0.4036 | 0.6770 | 0.8228 |
312
+
313
+
314
+ ### Framework versions
315
+
316
+ - Transformers 4.44.2
317
+ - Pytorch 2.4.0+cu118
318
+ - Datasets 2.21.0
319
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d32192d4c4442c81e77e3b7a40241c349c6d732bc0e998c2fba9bc7c19ce1e4
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cd0f0df8f4846ad3eb4652adefd092e223d87d00c0a17ca610630557a8a54c6
3
+ size 5240