Mayhem50 commited on
Commit
dd3095b
·
1 Parent(s): c0bf0bb

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": true,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters:
49
+ ```
50
+ {'batch_size': 64}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache`
56
+
57
+ Parameters of the fit()-Method:
58
+ ```
59
+ {
60
+ "epochs": 1,
61
+ "evaluation_steps": 880,
62
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
+ "max_grad_norm": 1,
64
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
+ "optimizer_params": {
66
+ "lr": 0.00032
67
+ },
68
+ "scheduler": "WarmupLinear",
69
+ "steps_per_epoch": null,
70
+ "warmup_steps": 881,
71
+ "weight_decay": 0.01
72
+ }
73
+ ```
74
+
75
+
76
+ ## Full Model Architecture
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BloomModel
80
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
81
+ )
82
+ ```
83
+
84
+ ## Citing & Authors
85
+
86
+ <!--- Describe where people can find more information -->
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/content/drive/MyDrive/Colab Notebooks/training_nli_v2_bigscience-bloom-560m-2023-01-31_22-56-28",
3
  "apply_residual_connection_post_layernorm": false,
4
  "architectures": [
5
  "BloomModel"
 
1
  {
2
+ "_name_or_path": "bigscience/bloom-560m",
3
  "apply_residual_connection_post_layernorm": false,
4
  "architectures": [
5
  "BloomModel"
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.1.0",
4
+ "transformers": "4.26.0",
5
+ "pytorch": "1.13.1+cu116"
6
+ }
7
+ }
eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,880,0.7730739295350652,0.7715551652245848,0.7624365605656847,0.7651878832560441,0.7738056780000323,0.774765962811202,0.5945028356336506,0.6492590809354595
3
+ 0,1760,0.8097610198466907,0.8095535472857835,0.7779407251297351,0.7821391678764665,0.7852814025292081,0.7886208940685075,0.6599095249806181,0.7049593008199263
4
+ 0,2640,0.8164356057125646,0.8177035938282402,0.7881232506320947,0.7931402875681008,0.7909464094977913,0.7962929294234878,0.6667516754297772,0.6945011601599906
5
+ 0,3520,0.8205566117832566,0.8225628071417286,0.7885632899300942,0.7940019760690814,0.7922869076151767,0.7973139071773592,0.68123805521984,0.7126297224766549
6
+ 0,4400,0.8246633613832021,0.8264392528739577,0.7948662818700284,0.8014143726369413,0.7973234805681629,0.8036905183338244,0.6811352124044009,0.7124567152399768
7
+ 0,5280,0.8278716311461626,0.8303647324478112,0.7944490876909815,0.8006687190981095,0.7971389647391712,0.8036715165413686,0.6934613903591799,0.7132242068721515
8
+ 0,6160,0.8276340537967477,0.8316613080745355,0.7977532663102133,0.8050608484597804,0.7990159334028079,0.8066362694744206,0.6932521481661752,0.7126691904753873
9
+ 0,7040,0.8263521795828297,0.8311953006359153,0.7964605233737377,0.8049510761421301,0.7966868931245471,0.8057105054911681,0.6920102887738941,0.7127765108340522
10
+ 0,7920,0.8295055078059729,0.8335673218437176,0.7996090528343557,0.8082567154311249,0.7996295598380291,0.8086261196003169,0.6913420227276409,0.7132463385600031
11
+ 0,8800,0.829875943370156,0.8334915869160747,0.7966128866622307,0.8056167830066436,0.7964793849514137,0.8059608544181625,0.6961949575851428,0.7154576176641358
12
+ 0,-1,0.8298786185501829,0.8334962541790778,0.7966138355982828,0.8056186760728082,0.7964805974373733,0.80596287933059,0.6962014252435245,0.7154768650083625
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 75,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:796518d81847a3370a556a1c4bc940286069aec6dbbc8cb61deb5f696dac82f7
3
+ size 14500694
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "model_max_length": 1000000000000000019884624838656,
6
+ "name_or_path": "bigscience/bloom-560m",
7
+ "pad_token": "<pad>",
8
+ "padding_side": "left",
9
+ "special_tokens_map_file": null,
10
+ "tokenizer_class": "BloomTokenizer",
11
+ "unk_token": "<unk>"
12
+ }