Mayhem50 commited on
Commit
ad5275b
·
1 Parent(s): cf6bb89

Upload 12 files

Browse files
1_Pooling/config.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "word_embedding_dimension": 1024,
3
  "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": true,
8
  "pooling_mode_lasttoken": false
9
  }
 
1
  {
2
  "word_embedding_dimension": 1024,
3
  "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
  "pooling_mode_lasttoken": false
9
  }
README.md CHANGED
@@ -4,11 +4,12 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
 
7
  ---
8
 
9
  # {MODEL_NAME}
10
 
11
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a None dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
 
13
  <!--- Describe your model here -->
14
 
@@ -33,6 +34,44 @@ print(embeddings)
33
 
34
 
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ## Evaluation Results
37
 
38
  <!--- Describe how your model was evaluated -->
@@ -45,7 +84,7 @@ The model was trained with the parameters:
45
 
46
  **DataLoader**:
47
 
48
- `torch.utils.data.dataloader.DataLoader` of length 30617 with parameters:
49
  ```
50
  {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
  ```
@@ -57,8 +96,8 @@ The model was trained with the parameters:
57
  Parameters of the fit()-Method:
58
  ```
59
  {
60
- "epochs": 3,
61
- "evaluation_steps": 1000,
62
  "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
63
  "max_grad_norm": 1,
64
  "optimizer_class": "<class 'transformers.optimization.AdamW'>",
@@ -69,7 +108,7 @@ Parameters of the fit()-Method:
69
  },
70
  "scheduler": "WarmupLinear",
71
  "steps_per_epoch": null,
72
- "warmup_steps": 10000,
73
  "weight_decay": 0.01
74
  }
75
  ```
@@ -79,7 +118,7 @@ Parameters of the fit()-Method:
79
  ```
80
  SentenceTransformer(
81
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BloomModel
82
- (1): WeightedMeanPooling()
83
  )
84
  ```
85
 
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ - transformers
8
  ---
9
 
10
  # {MODEL_NAME}
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
 
34
 
35
 
36
 
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModel
42
+ import torch
43
+
44
+
45
+ #Mean Pooling - Take attention mask into account for correct averaging
46
+ def mean_pooling(model_output, attention_mask):
47
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
+
51
+
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
+
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
58
+
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
+
62
+ # Compute token embeddings
63
+ with torch.no_grad():
64
+ model_output = model(**encoded_input)
65
+
66
+ # Perform pooling. In this case, mean pooling.
67
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
+
69
+ print("Sentence embeddings:")
70
+ print(sentence_embeddings)
71
+ ```
72
+
73
+
74
+
75
  ## Evaluation Results
76
 
77
  <!--- Describe how your model was evaluated -->
 
84
 
85
  **DataLoader**:
86
 
87
+ `torch.utils.data.dataloader.DataLoader` of length 3074 with parameters:
88
  ```
89
  {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
90
  ```
 
96
  Parameters of the fit()-Method:
97
  ```
98
  {
99
+ "epochs": 1,
100
+ "evaluation_steps": 500,
101
  "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
102
  "max_grad_norm": 1,
103
  "optimizer_class": "<class 'transformers.optimization.AdamW'>",
 
108
  },
109
  "scheduler": "WarmupLinear",
110
  "steps_per_epoch": null,
111
+ "warmup_steps": 1000,
112
  "weight_decay": 0.01
113
  }
114
  ```
 
118
  ```
119
  SentenceTransformer(
120
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BloomModel
121
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
122
  )
123
  ```
124
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "Mayhem50/sgpt-bloom-560M-nli",
3
  "apply_residual_connection_post_layernorm": false,
4
  "architectures": [
5
  "BloomModel"
 
1
  {
2
+ "_name_or_path": "output/make-multilingual-sys-2023-02-02_16-23-11",
3
  "apply_residual_connection_post_layernorm": false,
4
  "architectures": [
5
  "BloomModel"
eval/mse_evaluation_TED2020-en-fr-dev.tsv.gz_results.csv CHANGED
@@ -1,55 +1,8 @@
1
  epoch,steps,MSE
2
- 0,1000,1272.7741241455078
3
- 0,2000,1239.7001266479492
4
- 0,3000,1244.563388824463
5
- 0,4000,1255.099868774414
6
- 0,5000,1284.8063468933105
7
- 0,6000,1265.7715797424316
8
- 0,7000,1308.1769943237305
9
- 0,8000,1277.3436546325684
10
- 0,9000,1263.1890296936035
11
- 0,10000,1308.1955909729004
12
- 0,11000,1283.3735466003418
13
- 0,12000,1262.7530097961426
14
- 0,13000,1260.5589866638184
15
- 0,14000,1253.4588813781738
16
- 0,15000,1239.389419555664
17
- 0,16000,1284.862232208252
18
- 0,17000,1215.8602714538574
19
- 0,18000,1208.6514472961426
20
- 0,19000,1207.7702522277832
21
- 0,20000,1203.3350944519043
22
- 0,21000,1202.7355194091797
23
- 0,22000,1193.0546760559082
24
- 0,23000,1168.9787864685059
25
- 0,24000,1169.53125
26
- 0,25000,1167.289161682129
27
- 0,26000,1183.1158638000488
28
- 0,27000,1167.3190116882324
29
- 0,28000,1135.9935760498047
30
- 0,29000,1140.6807899475098
31
- 0,30000,1136.8371963500977
32
- 0,-1,1127.4292945861816
33
- 1,31000,1103.3071517944336
34
- 1,32000,1101.201057434082
35
- 1,33000,1093.484878540039
36
- 1,34000,1085.3593826293945
37
- 1,35000,1087.46919631958
38
- 1,36000,1088.6981964111328
39
- 1,37000,1085.8448028564453
40
- 1,38000,1079.0802955627441
41
- 1,39000,1078.3958435058594
42
- 1,40000,1067.711067199707
43
- 1,41000,1070.4686164855957
44
- 1,42000,1062.2697830200195
45
- 1,43000,1062.1541023254395
46
- 1,44000,1061.3683700561523
47
- 1,45000,1068.0513381958008
48
- 1,46000,1060.914134979248
49
- 1,47000,1047.8565216064453
50
- 1,48000,1049.0880012512207
51
- 1,49000,1041.7594909667969
52
- 1,50000,1047.9501724243164
53
- 1,51000,1041.0179138183594
54
- 1,52000,1047.9998588562012
55
- 1,53000,1035.096263885498
 
1
  epoch,steps,MSE
2
+ 0,500,1047.9930877685547
3
+ 0,1000,1094.466781616211
4
+ 0,1500,1080.2101135253906
5
+ 0,2000,1067.1212196350098
6
+ 0,2500,1034.5897674560547
7
+ 0,3000,1019.6515083312988
8
+ 0,-1,1017.3401832580566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eval/translation_evaluation_TED2020-en-fr-dev.tsv.gz_results.csv CHANGED
@@ -1,55 +1,8 @@
1
  epoch,steps,src2trg,trg2src
2
- 0,1000,0.963,0.96
3
- 0,2000,0.965,0.964
4
- 0,3000,0.963,0.962
5
- 0,4000,0.967,0.963
6
- 0,5000,0.966,0.959
7
- 0,6000,0.97,0.963
8
- 0,7000,0.966,0.962
9
- 0,8000,0.968,0.966
10
- 0,9000,0.974,0.964
11
- 0,10000,0.969,0.96
12
- 0,11000,0.972,0.965
13
- 0,12000,0.969,0.956
14
- 0,13000,0.962,0.957
15
- 0,14000,0.97,0.963
16
- 0,15000,0.969,0.967
17
- 0,16000,0.967,0.959
18
- 0,17000,0.971,0.962
19
- 0,18000,0.97,0.964
20
- 0,19000,0.965,0.962
21
- 0,20000,0.968,0.965
22
- 0,21000,0.972,0.967
23
- 0,22000,0.968,0.965
24
- 0,23000,0.972,0.966
25
- 0,24000,0.967,0.957
26
- 0,25000,0.972,0.961
27
- 0,26000,0.97,0.959
28
- 0,27000,0.969,0.962
29
- 0,28000,0.967,0.968
30
- 0,29000,0.968,0.963
31
- 0,30000,0.969,0.965
32
- 0,-1,0.968,0.961
33
- 1,31000,0.968,0.964
34
- 1,32000,0.969,0.967
35
- 1,33000,0.971,0.966
36
- 1,34000,0.972,0.965
37
- 1,35000,0.973,0.968
38
- 1,36000,0.973,0.97
39
- 1,37000,0.973,0.966
40
- 1,38000,0.971,0.967
41
- 1,39000,0.972,0.969
42
- 1,40000,0.973,0.967
43
- 1,41000,0.972,0.967
44
- 1,42000,0.97,0.967
45
- 1,43000,0.968,0.967
46
- 1,44000,0.97,0.96
47
- 1,45000,0.969,0.965
48
- 1,46000,0.972,0.964
49
- 1,47000,0.97,0.967
50
- 1,48000,0.972,0.965
51
- 1,49000,0.971,0.969
52
- 1,50000,0.973,0.969
53
- 1,51000,0.971,0.969
54
- 1,52000,0.973,0.967
55
- 1,53000,0.972,0.967
 
1
  epoch,steps,src2trg,trg2src
2
+ 0,500,0.972,0.966
3
+ 0,1000,0.971,0.97
4
+ 0,1500,0.97,0.967
5
+ 0,2000,0.968,0.964
6
+ 0,2500,0.964,0.964
7
+ 0,3000,0.968,0.962
8
+ 0,-1,0.968,0.963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modules.json CHANGED
@@ -8,7 +8,7 @@
8
  {
9
  "idx": 1,
10
  "name": "1",
11
- "path": "1_WeightedMeanPooling",
12
- "type": "sentence_transformers.models.WeightedMeanPooling"
13
  }
14
  ]
 
8
  {
9
  "idx": 1,
10
  "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
  }
14
  ]
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:785a0952ae08fc25b210abdbcb34d93157c751bf27559bd78a0a8336f4e5d902
3
  size 2236953889
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cf41e3b230fd7cc8cf0b7223177864d8dcdcd20a199f7243ef86b563b884e8f
3
  size 2236953889
tokenizer_config.json CHANGED
@@ -3,7 +3,7 @@
3
  "bos_token": "<s>",
4
  "eos_token": "</s>",
5
  "model_max_length": 1000000000000000019884624838656,
6
- "name_or_path": "Mayhem50/sgpt-bloom-560M-nli",
7
  "pad_token": "<pad>",
8
  "padding_side": "left",
9
  "special_tokens_map_file": null,
 
3
  "bos_token": "<s>",
4
  "eos_token": "</s>",
5
  "model_max_length": 1000000000000000019884624838656,
6
+ "name_or_path": "output/make-multilingual-sys-2023-02-02_16-23-11",
7
  "pad_token": "<pad>",
8
  "padding_side": "left",
9
  "special_tokens_map_file": null,