GG
commited on
Commit
·
831c1c1
1
Parent(s):
bd10c82
Colab-trained lunar lander
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander_1m.zip +3 -0
- lunar_lander_1m/_stable_baselines3_version +1 -0
- lunar_lander_1m/data +99 -0
- lunar_lander_1m/policy.optimizer.pth +3 -0
- lunar_lander_1m/policy.pth +3 -0
- lunar_lander_1m/pytorch_variables.pth +3 -0
- lunar_lander_1m/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.07 +/- 18.74
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2692e3be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2692e3beb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2692e3bf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2692e48040>", "_build": "<function ActorCriticPolicy._build at 0x7f2692e480d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2692e48160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2692e481f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2692e48280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2692e48310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2692e483a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2692e48430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2692e484c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2692e36a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688763230767855238, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqavT3SMou7M8x8vQP7jTy7ksk8w7ByvQAAgD8AAIA/oBQ3PtSxj7xi45u6fmLjOGA5/L0ANMo5AACAPwAAgD/N0Eo+Q95zvHLL/zpdORS523Dmvd3fH7oAAIA/AACAP67Wmb4gBHk/3q3AvuZTIb8LCfu+1jwyPQAAAAAAAAAA5utivW5m7j0Teh0+F5GzvssyJD0V51I9AAAAAAAAAAA6dUw+ZrkMP4b9wjwQstK+01e1PZLP4L0AAAAAAAAAADOAAL7se408+mO5PRQmg77UQbg75M3KuwAAAAAAAAAAAPH2PXEwELsKWIu9DEIMPGN6GT0KYqm9AACAPwAAgD+NNio+NG2VvFLTsbgdVBA3TUABvtZ58zcAAIA/AACAPzO4Dz6JhSo/O5TtPT6O/r59Brk9Bdg+vQAAAAAAAAAA5l9gPszAlT5kjIa+ddTIvpINub0Ko/68AAAAAAAAAABzYFE+qdBTvA6oozqEkKG4kIG7vRh1xrkAAIA/AACAP2bfw72YBbo9PtUfPjC4Tb7gAZE9TbbvvAAAAAAAAAAA+mooPgpmKzxdl16+36FDPUYruz14eQy9AACAPwAAgD+aeR+616MxOH4wrLr1tEi2Y1LaO1LSzzkAAIA/AACAP+2APj6h55e8vj3OuaW30jfh/Aa+PFYIOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFu6ClJpWWMAWyUS72MAXSUR0CgezjTjNpudX2UKGgGR0Bxs0mWt2cKaAdLuWgIR0Cge1ApSaVldX2UKGgGR0BxyHQmeDnOaAdLvWgIR0Cge2Xz+WGAdX2UKGgGR0BzVBY4hllLaAdLw2gIR0Cge9PoNd7fdX2UKGgGR0BwMiSTyJ9BaAdL3WgIR0Cge9uYhMakdX2UKGgGR0Bw2ejBVMmGaAdLxmgIR0CgfFNZvDP4dX2UKGgGR0BxEBmpVCHAaAdLtmgIR0CgfHChvitJdX2UKGgGR0BwZI/oq0+laAdL+2gIR0CgfJHEVFhHdX2UKGgGR0ByZN7IDHOsaAdLv2gIR0CgfJmTC+DfdX2UKGgGR0BxfSOS4e90aAdNIgFoCEdAoHyuDOC5E3V9lChoBkdAbzDsVLzwt2gHS/loCEdAoHz4GQjlgnV9lChoBkdActoCqIacZ2gHS9toCEdAoH0luzhP03V9lChoBkdAWaOvV3EAHWgHTegDaAhHQKB9RTMqz7d1fZQoaAZHQHDJspLEk0JoB0vwaAhHQKB9ozfrKNh1fZQoaAZHQHFiIESuhbpoB0vkaAhHQKB9oO938oB1fZQoaAZHQHEQhw++ueVoB0veaAhHQKB+lIEKVpt1fZQoaAZHQHDYIe5nUUhoB0vraAhHQKB+mPVd5Y51fZQoaAZHQHFh225QP7NoB0vhaAhHQKB/CiY9gWt1fZQoaAZHQHO2ZCBwuNBoB0vCaAhHQKB/RkupS751fZQoaAZHQHMjBb4agmJoB00VAWgIR0Cgf0YQ8OkMdX2UKGgGR0ByVlTQ3PzGaAdLzWgIR0Cgf0+XZ5AydX2UKGgGR0BvFTfaYeDGaAdL1GgIR0Cgf07jtG/fdX2UKGgGR0BzX1mEoOQRaAdL92gIR0Cgf13yiEg4dX2UKGgGR0BvuMHD7655aAdL1GgIR0Cgf4gxBVuKdX2UKGgGR0BzH9orWiDeaAdL02gIR0Cgf5cPnSv1dX2UKGgGR0BzHY8wHqu9aAdL7WgIR0CggDqjBVMmdX2UKGgGR0Bj/Hai9IwuaAdN6ANoCEdAoIBi79Q40nV9lChoBkdAcD28ZDRc/2gHS+1oCEdAoIBpKODJ2nV9lChoBkdAc8Ujin5zo2gHS9BoCEdAoICA62fCh3V9lChoBkdAcTYe4kNWl2gHTQsBaAhHQKCA6PS2H+J1fZQoaAZHQHKspAhStNloB0v1aAhHQKCA/jghr311fZQoaAZHQHEsWjoIOYpoB0uoaAhHQKCBSM1CPZJ1fZQoaAZHQHAm3XAdn01oB0vHaAhHQKCBRGe+VTt1fZQoaAZHQHC3NUKiPABoB0vNaAhHQKCBXK2a2F51fZQoaAZHQHGWRiG34KxoB0u8aAhHQKCBvEpAlfJ1fZQoaAZHQHDiWd3B55ZoB0vEaAhHQKCB2yAxzq91fZQoaAZHQHDWLO7g88toB0vbaAhHQKCCO6IWP911fZQoaAZHQHKeUlZ5iVloB0vWaAhHQKCCWDg62fF1fZQoaAZHQHEkKNVBD5VoB0vcaAhHQKCCezkZJkJ1fZQoaAZHQHI0vpMYdhloB0vAaAhHQKCC+OMl1KZ1fZQoaAZHQG7Tn8sMAm1oB0vNaAhHQKCDCioKlYV1fZQoaAZHQHBdgPI4lyBoB0vYaAhHQKCDC7wrlNl1fZQoaAZHQG+/ZksjFAFoB0vlaAhHQKCDZJRO1v51fZQoaAZHQHB/lQl8gIRoB0vPaAhHQKCDuyeI2wV1fZQoaAZHQHBLDltCRfZoB0vEaAhHQKCD64gA6uJ1fZQoaAZHQG2Lm1pj+aVoB0vIaAhHQKCD957gKnh1fZQoaAZHQHRoI2XLNfRoB0v4aAhHQKCEPXGOuJV1fZQoaAZHQHMRoLPUrkNoB0vFaAhHQKCEeS8rZrZ1fZQoaAZHQHIK4l2NedFoB0vOaAhHQKCEvahYeT51fZQoaAZHQHDv0ZrHlwNoB0vWaAhHQKCFqUQkHD91fZQoaAZHQHFP8MuvlltoB0u3aAhHQKCGBXOnl4l1fZQoaAZHQHN4gHqu8sdoB00DAWgIR0CghoCqZML4dX2UKGgGR0BuQXkRzzVdaAdL8GgIR0CghoRv3rUtdX2UKGgGR0Bw1rhqCYkWaAdLymgIR0CghpWTxG2DdX2UKGgGR0ByYe2qkuYhaAdLyWgIR0CghxaEzwc6dX2UKGgGR0Bvfgqbz9S/aAdLu2gIR0Cgh0VrAP/adX2UKGgGR0BwPLBuXNTtaAdLv2gIR0Cgh7Zf+jubdX2UKGgGR0By1Jgy/KyOaAdLzWgIR0Cgh/JQLux9dX2UKGgGR0Bx/oRmK64EaAdLwWgIR0CgiCebmU4adX2UKGgGR0Bzu7gP3BYWaAdLv2gIR0CgiHtKRMewdX2UKGgGR0BwPb3L3bmEaAdLx2gIR0CgiRGN70FsdX2UKGgGR0BwZZgjQiRoaAdLuGgIR0CgicC+De0pdX2UKGgGR0ByQ7YQJ5VwaAdNXQFoCEdAoInOgzxgA3V9lChoBkdAcvaV1fVqe2gHS8loCEdAoIqOce8wpXV9lChoBkdAcMjmWdEsrmgHS8VoCEdAoIr4sNDtxHV9lChoBkdAcmmews5GSmgHS7hoCEdAoIuP+uNgjXV9lChoBkdAcO3e/Yao/GgHS9FoCEdAoIv8bvPTonV9lChoBkdAcKgQTEit72gHS7loCEdAoIxgGpuMuXV9lChoBkdAckkcMmWt2mgHS9BoCEdAoIy6jtXxOXV9lChoBkdAcj9hPTG5tmgHS71oCEdAoIzCIP9UCXV9lChoBkdAcR222G7Bf2gHTQoBaAhHQKCM3Fqi48V1fZQoaAZHQG60IHcDbJxoB0vNaAhHQKCNflI3BHl1fZQoaAZHQHFfARXfZVZoB0u7aAhHQKCNvSiudPN1fZQoaAZHQG6a+yJKraNoB0vGaAhHQKCO05RTCLx1fZQoaAZHQG8o1Z1V5rxoB0vSaAhHQKCPFbL2YfJ1fZQoaAZHQHKFwLJCBwxoB0vBaAhHQKCPgJjUd7x1fZQoaAZHQHHy01uR9w5oB0u3aAhHQKCPopo9LYh1fZQoaAZHQG5CU5lvqC9oB0vNaAhHQKCQZHy3CsR1fZQoaAZHQHFBJO8CgbpoB0vAaAhHQKCQ9gpBomJ1fZQoaAZHQHBi20qpcX5oB0u8aAhHQKCRq/pt78h1fZQoaAZHQHB9XjIaLn9oB0vhaAhHQKCRsKlYU351fZQoaAZHQHACLrLQokRoB0vtaAhHQKCR1qRlpXZ1fZQoaAZHQG4Do+wC8vpoB0vRaAhHQKCR418b70p1fZQoaAZHQGWhE4WDYiBoB03oA2gIR0CgkhcSf16FdX2UKGgGR0BdEJSrHU+caAdN6ANoCEdAoJIjaAWi13V9lChoBkdAcDAUyYXwb2gHS+NoCEdAoJMRradtmHV9lChoBkdAcaryLAHmimgHS9poCEdAoJMUm+j/MnV9lChoBkdAcEJi5d4VymgHS9toCEdAoJNX/io86nV9lChoBkdAcCvmvnr6cmgHS8VoCEdAoJPVAZ88cXV9lChoBkdAZSUnsLORkmgHTegDaAhHQKCUq2P1ct51fZQoaAZHQHI1gfyPMjhoB0vtaAhHQKCVBfO2RaJ1fZQoaAZHQHE9b1h9b5doB0vBaAhHQKCVECr92ox1fZQoaAZHQHDq7tE5QxhoB0vBaAhHQKCVG3DvVmV1fZQoaAZHQHDs9g0CRwJoB0vgaAhHQKCVYs3AEdN1fZQoaAZHQHBd9jCpFThoB0vqaAhHQKCViqioKlZ1fZQoaAZHQHG9aV+qioNoB0vgaAhHQKCVsunuRcN1fZQoaAZHQHICwmAskIJoB0vhaAhHQKCVwAksz2x1fZQoaAZHQHJx9gF5fMRoB0vdaAhHQKCWgcvM8ox1fZQoaAZHQHJ182NvOyFoB0vUaAhHQKCWo/UvwmV1fZQoaAZHQG8UriuMdcVoB0vMaAhHQKCW+flp48l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_lander_1m.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbdc35e4885f5b9e487ecd6de3d9fe47c73a61c68eb467519762f8f28d0f03a6
|
3 |
+
size 146638
|
lunar_lander_1m/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_lander_1m/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2692e3be20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2692e3beb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2692e3bf40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2692e48040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2692e480d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2692e48160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2692e481f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2692e48280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2692e48310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2692e483a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2692e48430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2692e484c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2692e36a00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688763230767855238,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqavT3SMou7M8x8vQP7jTy7ksk8w7ByvQAAgD8AAIA/oBQ3PtSxj7xi45u6fmLjOGA5/L0ANMo5AACAPwAAgD/N0Eo+Q95zvHLL/zpdORS523Dmvd3fH7oAAIA/AACAP67Wmb4gBHk/3q3AvuZTIb8LCfu+1jwyPQAAAAAAAAAA5utivW5m7j0Teh0+F5GzvssyJD0V51I9AAAAAAAAAAA6dUw+ZrkMP4b9wjwQstK+01e1PZLP4L0AAAAAAAAAADOAAL7se408+mO5PRQmg77UQbg75M3KuwAAAAAAAAAAAPH2PXEwELsKWIu9DEIMPGN6GT0KYqm9AACAPwAAgD+NNio+NG2VvFLTsbgdVBA3TUABvtZ58zcAAIA/AACAPzO4Dz6JhSo/O5TtPT6O/r59Brk9Bdg+vQAAAAAAAAAA5l9gPszAlT5kjIa+ddTIvpINub0Ko/68AAAAAAAAAABzYFE+qdBTvA6oozqEkKG4kIG7vRh1xrkAAIA/AACAP2bfw72YBbo9PtUfPjC4Tb7gAZE9TbbvvAAAAAAAAAAA+mooPgpmKzxdl16+36FDPUYruz14eQy9AACAPwAAgD+aeR+616MxOH4wrLr1tEi2Y1LaO1LSzzkAAIA/AACAP+2APj6h55e8vj3OuaW30jfh/Aa+PFYIOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFu6ClJpWWMAWyUS72MAXSUR0CgezjTjNpudX2UKGgGR0Bxs0mWt2cKaAdLuWgIR0Cge1ApSaVldX2UKGgGR0BxyHQmeDnOaAdLvWgIR0Cge2Xz+WGAdX2UKGgGR0BzVBY4hllLaAdLw2gIR0Cge9PoNd7fdX2UKGgGR0BwMiSTyJ9BaAdL3WgIR0Cge9uYhMakdX2UKGgGR0Bw2ejBVMmGaAdLxmgIR0CgfFNZvDP4dX2UKGgGR0BxEBmpVCHAaAdLtmgIR0CgfHChvitJdX2UKGgGR0BwZI/oq0+laAdL+2gIR0CgfJHEVFhHdX2UKGgGR0ByZN7IDHOsaAdLv2gIR0CgfJmTC+DfdX2UKGgGR0BxfSOS4e90aAdNIgFoCEdAoHyuDOC5E3V9lChoBkdAbzDsVLzwt2gHS/loCEdAoHz4GQjlgnV9lChoBkdActoCqIacZ2gHS9toCEdAoH0luzhP03V9lChoBkdAWaOvV3EAHWgHTegDaAhHQKB9RTMqz7d1fZQoaAZHQHDJspLEk0JoB0vwaAhHQKB9ozfrKNh1fZQoaAZHQHFiIESuhbpoB0vkaAhHQKB9oO938oB1fZQoaAZHQHEQhw++ueVoB0veaAhHQKB+lIEKVpt1fZQoaAZHQHDYIe5nUUhoB0vraAhHQKB+mPVd5Y51fZQoaAZHQHFh225QP7NoB0vhaAhHQKB/CiY9gWt1fZQoaAZHQHO2ZCBwuNBoB0vCaAhHQKB/RkupS751fZQoaAZHQHMjBb4agmJoB00VAWgIR0Cgf0YQ8OkMdX2UKGgGR0ByVlTQ3PzGaAdLzWgIR0Cgf0+XZ5AydX2UKGgGR0BvFTfaYeDGaAdL1GgIR0Cgf07jtG/fdX2UKGgGR0BzX1mEoOQRaAdL92gIR0Cgf13yiEg4dX2UKGgGR0BvuMHD7655aAdL1GgIR0Cgf4gxBVuKdX2UKGgGR0BzH9orWiDeaAdL02gIR0Cgf5cPnSv1dX2UKGgGR0BzHY8wHqu9aAdL7WgIR0CggDqjBVMmdX2UKGgGR0Bj/Hai9IwuaAdN6ANoCEdAoIBi79Q40nV9lChoBkdAcD28ZDRc/2gHS+1oCEdAoIBpKODJ2nV9lChoBkdAc8Ujin5zo2gHS9BoCEdAoICA62fCh3V9lChoBkdAcTYe4kNWl2gHTQsBaAhHQKCA6PS2H+J1fZQoaAZHQHKspAhStNloB0v1aAhHQKCA/jghr311fZQoaAZHQHEsWjoIOYpoB0uoaAhHQKCBSM1CPZJ1fZQoaAZHQHAm3XAdn01oB0vHaAhHQKCBRGe+VTt1fZQoaAZHQHC3NUKiPABoB0vNaAhHQKCBXK2a2F51fZQoaAZHQHGWRiG34KxoB0u8aAhHQKCBvEpAlfJ1fZQoaAZHQHDiWd3B55ZoB0vEaAhHQKCB2yAxzq91fZQoaAZHQHDWLO7g88toB0vbaAhHQKCCO6IWP911fZQoaAZHQHKeUlZ5iVloB0vWaAhHQKCCWDg62fF1fZQoaAZHQHEkKNVBD5VoB0vcaAhHQKCCezkZJkJ1fZQoaAZHQHI0vpMYdhloB0vAaAhHQKCC+OMl1KZ1fZQoaAZHQG7Tn8sMAm1oB0vNaAhHQKCDCioKlYV1fZQoaAZHQHBdgPI4lyBoB0vYaAhHQKCDC7wrlNl1fZQoaAZHQG+/ZksjFAFoB0vlaAhHQKCDZJRO1v51fZQoaAZHQHB/lQl8gIRoB0vPaAhHQKCDuyeI2wV1fZQoaAZHQHBLDltCRfZoB0vEaAhHQKCD64gA6uJ1fZQoaAZHQG2Lm1pj+aVoB0vIaAhHQKCD957gKnh1fZQoaAZHQHRoI2XLNfRoB0v4aAhHQKCEPXGOuJV1fZQoaAZHQHMRoLPUrkNoB0vFaAhHQKCEeS8rZrZ1fZQoaAZHQHIK4l2NedFoB0vOaAhHQKCEvahYeT51fZQoaAZHQHDv0ZrHlwNoB0vWaAhHQKCFqUQkHD91fZQoaAZHQHFP8MuvlltoB0u3aAhHQKCGBXOnl4l1fZQoaAZHQHN4gHqu8sdoB00DAWgIR0CghoCqZML4dX2UKGgGR0BuQXkRzzVdaAdL8GgIR0CghoRv3rUtdX2UKGgGR0Bw1rhqCYkWaAdLymgIR0CghpWTxG2DdX2UKGgGR0ByYe2qkuYhaAdLyWgIR0CghxaEzwc6dX2UKGgGR0Bvfgqbz9S/aAdLu2gIR0Cgh0VrAP/adX2UKGgGR0BwPLBuXNTtaAdLv2gIR0Cgh7Zf+jubdX2UKGgGR0By1Jgy/KyOaAdLzWgIR0Cgh/JQLux9dX2UKGgGR0Bx/oRmK64EaAdLwWgIR0CgiCebmU4adX2UKGgGR0Bzu7gP3BYWaAdLv2gIR0CgiHtKRMewdX2UKGgGR0BwPb3L3bmEaAdLx2gIR0CgiRGN70FsdX2UKGgGR0BwZZgjQiRoaAdLuGgIR0CgicC+De0pdX2UKGgGR0ByQ7YQJ5VwaAdNXQFoCEdAoInOgzxgA3V9lChoBkdAcvaV1fVqe2gHS8loCEdAoIqOce8wpXV9lChoBkdAcMjmWdEsrmgHS8VoCEdAoIr4sNDtxHV9lChoBkdAcmmews5GSmgHS7hoCEdAoIuP+uNgjXV9lChoBkdAcO3e/Yao/GgHS9FoCEdAoIv8bvPTonV9lChoBkdAcKgQTEit72gHS7loCEdAoIxgGpuMuXV9lChoBkdAckkcMmWt2mgHS9BoCEdAoIy6jtXxOXV9lChoBkdAcj9hPTG5tmgHS71oCEdAoIzCIP9UCXV9lChoBkdAcR222G7Bf2gHTQoBaAhHQKCM3Fqi48V1fZQoaAZHQG60IHcDbJxoB0vNaAhHQKCNflI3BHl1fZQoaAZHQHFfARXfZVZoB0u7aAhHQKCNvSiudPN1fZQoaAZHQG6a+yJKraNoB0vGaAhHQKCO05RTCLx1fZQoaAZHQG8o1Z1V5rxoB0vSaAhHQKCPFbL2YfJ1fZQoaAZHQHKFwLJCBwxoB0vBaAhHQKCPgJjUd7x1fZQoaAZHQHHy01uR9w5oB0u3aAhHQKCPopo9LYh1fZQoaAZHQG5CU5lvqC9oB0vNaAhHQKCQZHy3CsR1fZQoaAZHQHFBJO8CgbpoB0vAaAhHQKCQ9gpBomJ1fZQoaAZHQHBi20qpcX5oB0u8aAhHQKCRq/pt78h1fZQoaAZHQHB9XjIaLn9oB0vhaAhHQKCRsKlYU351fZQoaAZHQHACLrLQokRoB0vtaAhHQKCR1qRlpXZ1fZQoaAZHQG4Do+wC8vpoB0vRaAhHQKCR418b70p1fZQoaAZHQGWhE4WDYiBoB03oA2gIR0CgkhcSf16FdX2UKGgGR0BdEJSrHU+caAdN6ANoCEdAoJIjaAWi13V9lChoBkdAcDAUyYXwb2gHS+NoCEdAoJMRradtmHV9lChoBkdAcaryLAHmimgHS9poCEdAoJMUm+j/MnV9lChoBkdAcEJi5d4VymgHS9toCEdAoJNX/io86nV9lChoBkdAcCvmvnr6cmgHS8VoCEdAoJPVAZ88cXV9lChoBkdAZSUnsLORkmgHTegDaAhHQKCUq2P1ct51fZQoaAZHQHI1gfyPMjhoB0vtaAhHQKCVBfO2RaJ1fZQoaAZHQHE9b1h9b5doB0vBaAhHQKCVECr92ox1fZQoaAZHQHDq7tE5QxhoB0vBaAhHQKCVG3DvVmV1fZQoaAZHQHDs9g0CRwJoB0vgaAhHQKCVYs3AEdN1fZQoaAZHQHBd9jCpFThoB0vqaAhHQKCViqioKlZ1fZQoaAZHQHG9aV+qioNoB0vgaAhHQKCVsunuRcN1fZQoaAZHQHICwmAskIJoB0vhaAhHQKCVwAksz2x1fZQoaAZHQHJx9gF5fMRoB0vdaAhHQKCWgcvM8ox1fZQoaAZHQHJ182NvOyFoB0vUaAhHQKCWo/UvwmV1fZQoaAZHQG8UriuMdcVoB0vMaAhHQKCW+flp48l1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 380,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar_lander_1m/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f66ed6a639232093b57ad563378fe1d0806b66bf4bc56306cb4a33a67f4fc32f
|
3 |
+
size 87929
|
lunar_lander_1m/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad6386073b3ed4e7854a9e88a664efe2f74b069018a11f9f61c39826d4d5efac
|
3 |
+
size 43329
|
lunar_lander_1m/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_1m/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (158 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.0686634, "std_reward": 18.742508828690276, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-07T21:26:14.104321"}
|