GG commited on
Commit
831c1c1
·
1 Parent(s): bd10c82

Colab-trained lunar lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 272.07 +/- 18.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2692e3be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2692e3beb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2692e3bf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2692e48040>", "_build": "<function ActorCriticPolicy._build at 0x7f2692e480d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2692e48160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2692e481f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2692e48280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2692e48310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2692e483a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2692e48430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2692e484c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2692e36a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688763230767855238, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqavT3SMou7M8x8vQP7jTy7ksk8w7ByvQAAgD8AAIA/oBQ3PtSxj7xi45u6fmLjOGA5/L0ANMo5AACAPwAAgD/N0Eo+Q95zvHLL/zpdORS523Dmvd3fH7oAAIA/AACAP67Wmb4gBHk/3q3AvuZTIb8LCfu+1jwyPQAAAAAAAAAA5utivW5m7j0Teh0+F5GzvssyJD0V51I9AAAAAAAAAAA6dUw+ZrkMP4b9wjwQstK+01e1PZLP4L0AAAAAAAAAADOAAL7se408+mO5PRQmg77UQbg75M3KuwAAAAAAAAAAAPH2PXEwELsKWIu9DEIMPGN6GT0KYqm9AACAPwAAgD+NNio+NG2VvFLTsbgdVBA3TUABvtZ58zcAAIA/AACAPzO4Dz6JhSo/O5TtPT6O/r59Brk9Bdg+vQAAAAAAAAAA5l9gPszAlT5kjIa+ddTIvpINub0Ko/68AAAAAAAAAABzYFE+qdBTvA6oozqEkKG4kIG7vRh1xrkAAIA/AACAP2bfw72YBbo9PtUfPjC4Tb7gAZE9TbbvvAAAAAAAAAAA+mooPgpmKzxdl16+36FDPUYruz14eQy9AACAPwAAgD+aeR+616MxOH4wrLr1tEi2Y1LaO1LSzzkAAIA/AACAP+2APj6h55e8vj3OuaW30jfh/Aa+PFYIOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFu6ClJpWWMAWyUS72MAXSUR0CgezjTjNpudX2UKGgGR0Bxs0mWt2cKaAdLuWgIR0Cge1ApSaVldX2UKGgGR0BxyHQmeDnOaAdLvWgIR0Cge2Xz+WGAdX2UKGgGR0BzVBY4hllLaAdLw2gIR0Cge9PoNd7fdX2UKGgGR0BwMiSTyJ9BaAdL3WgIR0Cge9uYhMakdX2UKGgGR0Bw2ejBVMmGaAdLxmgIR0CgfFNZvDP4dX2UKGgGR0BxEBmpVCHAaAdLtmgIR0CgfHChvitJdX2UKGgGR0BwZI/oq0+laAdL+2gIR0CgfJHEVFhHdX2UKGgGR0ByZN7IDHOsaAdLv2gIR0CgfJmTC+DfdX2UKGgGR0BxfSOS4e90aAdNIgFoCEdAoHyuDOC5E3V9lChoBkdAbzDsVLzwt2gHS/loCEdAoHz4GQjlgnV9lChoBkdActoCqIacZ2gHS9toCEdAoH0luzhP03V9lChoBkdAWaOvV3EAHWgHTegDaAhHQKB9RTMqz7d1fZQoaAZHQHDJspLEk0JoB0vwaAhHQKB9ozfrKNh1fZQoaAZHQHFiIESuhbpoB0vkaAhHQKB9oO938oB1fZQoaAZHQHEQhw++ueVoB0veaAhHQKB+lIEKVpt1fZQoaAZHQHDYIe5nUUhoB0vraAhHQKB+mPVd5Y51fZQoaAZHQHFh225QP7NoB0vhaAhHQKB/CiY9gWt1fZQoaAZHQHO2ZCBwuNBoB0vCaAhHQKB/RkupS751fZQoaAZHQHMjBb4agmJoB00VAWgIR0Cgf0YQ8OkMdX2UKGgGR0ByVlTQ3PzGaAdLzWgIR0Cgf0+XZ5AydX2UKGgGR0BvFTfaYeDGaAdL1GgIR0Cgf07jtG/fdX2UKGgGR0BzX1mEoOQRaAdL92gIR0Cgf13yiEg4dX2UKGgGR0BvuMHD7655aAdL1GgIR0Cgf4gxBVuKdX2UKGgGR0BzH9orWiDeaAdL02gIR0Cgf5cPnSv1dX2UKGgGR0BzHY8wHqu9aAdL7WgIR0CggDqjBVMmdX2UKGgGR0Bj/Hai9IwuaAdN6ANoCEdAoIBi79Q40nV9lChoBkdAcD28ZDRc/2gHS+1oCEdAoIBpKODJ2nV9lChoBkdAc8Ujin5zo2gHS9BoCEdAoICA62fCh3V9lChoBkdAcTYe4kNWl2gHTQsBaAhHQKCA6PS2H+J1fZQoaAZHQHKspAhStNloB0v1aAhHQKCA/jghr311fZQoaAZHQHEsWjoIOYpoB0uoaAhHQKCBSM1CPZJ1fZQoaAZHQHAm3XAdn01oB0vHaAhHQKCBRGe+VTt1fZQoaAZHQHC3NUKiPABoB0vNaAhHQKCBXK2a2F51fZQoaAZHQHGWRiG34KxoB0u8aAhHQKCBvEpAlfJ1fZQoaAZHQHDiWd3B55ZoB0vEaAhHQKCB2yAxzq91fZQoaAZHQHDWLO7g88toB0vbaAhHQKCCO6IWP911fZQoaAZHQHKeUlZ5iVloB0vWaAhHQKCCWDg62fF1fZQoaAZHQHEkKNVBD5VoB0vcaAhHQKCCezkZJkJ1fZQoaAZHQHI0vpMYdhloB0vAaAhHQKCC+OMl1KZ1fZQoaAZHQG7Tn8sMAm1oB0vNaAhHQKCDCioKlYV1fZQoaAZHQHBdgPI4lyBoB0vYaAhHQKCDC7wrlNl1fZQoaAZHQG+/ZksjFAFoB0vlaAhHQKCDZJRO1v51fZQoaAZHQHB/lQl8gIRoB0vPaAhHQKCDuyeI2wV1fZQoaAZHQHBLDltCRfZoB0vEaAhHQKCD64gA6uJ1fZQoaAZHQG2Lm1pj+aVoB0vIaAhHQKCD957gKnh1fZQoaAZHQHRoI2XLNfRoB0v4aAhHQKCEPXGOuJV1fZQoaAZHQHMRoLPUrkNoB0vFaAhHQKCEeS8rZrZ1fZQoaAZHQHIK4l2NedFoB0vOaAhHQKCEvahYeT51fZQoaAZHQHDv0ZrHlwNoB0vWaAhHQKCFqUQkHD91fZQoaAZHQHFP8MuvlltoB0u3aAhHQKCGBXOnl4l1fZQoaAZHQHN4gHqu8sdoB00DAWgIR0CghoCqZML4dX2UKGgGR0BuQXkRzzVdaAdL8GgIR0CghoRv3rUtdX2UKGgGR0Bw1rhqCYkWaAdLymgIR0CghpWTxG2DdX2UKGgGR0ByYe2qkuYhaAdLyWgIR0CghxaEzwc6dX2UKGgGR0Bvfgqbz9S/aAdLu2gIR0Cgh0VrAP/adX2UKGgGR0BwPLBuXNTtaAdLv2gIR0Cgh7Zf+jubdX2UKGgGR0By1Jgy/KyOaAdLzWgIR0Cgh/JQLux9dX2UKGgGR0Bx/oRmK64EaAdLwWgIR0CgiCebmU4adX2UKGgGR0Bzu7gP3BYWaAdLv2gIR0CgiHtKRMewdX2UKGgGR0BwPb3L3bmEaAdLx2gIR0CgiRGN70FsdX2UKGgGR0BwZZgjQiRoaAdLuGgIR0CgicC+De0pdX2UKGgGR0ByQ7YQJ5VwaAdNXQFoCEdAoInOgzxgA3V9lChoBkdAcvaV1fVqe2gHS8loCEdAoIqOce8wpXV9lChoBkdAcMjmWdEsrmgHS8VoCEdAoIr4sNDtxHV9lChoBkdAcmmews5GSmgHS7hoCEdAoIuP+uNgjXV9lChoBkdAcO3e/Yao/GgHS9FoCEdAoIv8bvPTonV9lChoBkdAcKgQTEit72gHS7loCEdAoIxgGpuMuXV9lChoBkdAckkcMmWt2mgHS9BoCEdAoIy6jtXxOXV9lChoBkdAcj9hPTG5tmgHS71oCEdAoIzCIP9UCXV9lChoBkdAcR222G7Bf2gHTQoBaAhHQKCM3Fqi48V1fZQoaAZHQG60IHcDbJxoB0vNaAhHQKCNflI3BHl1fZQoaAZHQHFfARXfZVZoB0u7aAhHQKCNvSiudPN1fZQoaAZHQG6a+yJKraNoB0vGaAhHQKCO05RTCLx1fZQoaAZHQG8o1Z1V5rxoB0vSaAhHQKCPFbL2YfJ1fZQoaAZHQHKFwLJCBwxoB0vBaAhHQKCPgJjUd7x1fZQoaAZHQHHy01uR9w5oB0u3aAhHQKCPopo9LYh1fZQoaAZHQG5CU5lvqC9oB0vNaAhHQKCQZHy3CsR1fZQoaAZHQHFBJO8CgbpoB0vAaAhHQKCQ9gpBomJ1fZQoaAZHQHBi20qpcX5oB0u8aAhHQKCRq/pt78h1fZQoaAZHQHB9XjIaLn9oB0vhaAhHQKCRsKlYU351fZQoaAZHQHACLrLQokRoB0vtaAhHQKCR1qRlpXZ1fZQoaAZHQG4Do+wC8vpoB0vRaAhHQKCR418b70p1fZQoaAZHQGWhE4WDYiBoB03oA2gIR0CgkhcSf16FdX2UKGgGR0BdEJSrHU+caAdN6ANoCEdAoJIjaAWi13V9lChoBkdAcDAUyYXwb2gHS+NoCEdAoJMRradtmHV9lChoBkdAcaryLAHmimgHS9poCEdAoJMUm+j/MnV9lChoBkdAcEJi5d4VymgHS9toCEdAoJNX/io86nV9lChoBkdAcCvmvnr6cmgHS8VoCEdAoJPVAZ88cXV9lChoBkdAZSUnsLORkmgHTegDaAhHQKCUq2P1ct51fZQoaAZHQHI1gfyPMjhoB0vtaAhHQKCVBfO2RaJ1fZQoaAZHQHE9b1h9b5doB0vBaAhHQKCVECr92ox1fZQoaAZHQHDq7tE5QxhoB0vBaAhHQKCVG3DvVmV1fZQoaAZHQHDs9g0CRwJoB0vgaAhHQKCVYs3AEdN1fZQoaAZHQHBd9jCpFThoB0vqaAhHQKCViqioKlZ1fZQoaAZHQHG9aV+qioNoB0vgaAhHQKCVsunuRcN1fZQoaAZHQHICwmAskIJoB0vhaAhHQKCVwAksz2x1fZQoaAZHQHJx9gF5fMRoB0vdaAhHQKCWgcvM8ox1fZQoaAZHQHJ182NvOyFoB0vUaAhHQKCWo/UvwmV1fZQoaAZHQG8UriuMdcVoB0vMaAhHQKCW+flp48l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
lunar_lander_1m.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbdc35e4885f5b9e487ecd6de3d9fe47c73a61c68eb467519762f8f28d0f03a6
3
+ size 146638
lunar_lander_1m/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
lunar_lander_1m/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2692e3be20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2692e3beb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2692e3bf40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2692e48040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2692e480d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2692e48160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2692e481f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2692e48280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2692e48310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2692e483a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2692e48430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2692e484c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2692e36a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688763230767855238,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqavT3SMou7M8x8vQP7jTy7ksk8w7ByvQAAgD8AAIA/oBQ3PtSxj7xi45u6fmLjOGA5/L0ANMo5AACAPwAAgD/N0Eo+Q95zvHLL/zpdORS523Dmvd3fH7oAAIA/AACAP67Wmb4gBHk/3q3AvuZTIb8LCfu+1jwyPQAAAAAAAAAA5utivW5m7j0Teh0+F5GzvssyJD0V51I9AAAAAAAAAAA6dUw+ZrkMP4b9wjwQstK+01e1PZLP4L0AAAAAAAAAADOAAL7se408+mO5PRQmg77UQbg75M3KuwAAAAAAAAAAAPH2PXEwELsKWIu9DEIMPGN6GT0KYqm9AACAPwAAgD+NNio+NG2VvFLTsbgdVBA3TUABvtZ58zcAAIA/AACAPzO4Dz6JhSo/O5TtPT6O/r59Brk9Bdg+vQAAAAAAAAAA5l9gPszAlT5kjIa+ddTIvpINub0Ko/68AAAAAAAAAABzYFE+qdBTvA6oozqEkKG4kIG7vRh1xrkAAIA/AACAP2bfw72YBbo9PtUfPjC4Tb7gAZE9TbbvvAAAAAAAAAAA+mooPgpmKzxdl16+36FDPUYruz14eQy9AACAPwAAgD+aeR+616MxOH4wrLr1tEi2Y1LaO1LSzzkAAIA/AACAP+2APj6h55e8vj3OuaW30jfh/Aa+PFYIOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFu6ClJpWWMAWyUS72MAXSUR0CgezjTjNpudX2UKGgGR0Bxs0mWt2cKaAdLuWgIR0Cge1ApSaVldX2UKGgGR0BxyHQmeDnOaAdLvWgIR0Cge2Xz+WGAdX2UKGgGR0BzVBY4hllLaAdLw2gIR0Cge9PoNd7fdX2UKGgGR0BwMiSTyJ9BaAdL3WgIR0Cge9uYhMakdX2UKGgGR0Bw2ejBVMmGaAdLxmgIR0CgfFNZvDP4dX2UKGgGR0BxEBmpVCHAaAdLtmgIR0CgfHChvitJdX2UKGgGR0BwZI/oq0+laAdL+2gIR0CgfJHEVFhHdX2UKGgGR0ByZN7IDHOsaAdLv2gIR0CgfJmTC+DfdX2UKGgGR0BxfSOS4e90aAdNIgFoCEdAoHyuDOC5E3V9lChoBkdAbzDsVLzwt2gHS/loCEdAoHz4GQjlgnV9lChoBkdActoCqIacZ2gHS9toCEdAoH0luzhP03V9lChoBkdAWaOvV3EAHWgHTegDaAhHQKB9RTMqz7d1fZQoaAZHQHDJspLEk0JoB0vwaAhHQKB9ozfrKNh1fZQoaAZHQHFiIESuhbpoB0vkaAhHQKB9oO938oB1fZQoaAZHQHEQhw++ueVoB0veaAhHQKB+lIEKVpt1fZQoaAZHQHDYIe5nUUhoB0vraAhHQKB+mPVd5Y51fZQoaAZHQHFh225QP7NoB0vhaAhHQKB/CiY9gWt1fZQoaAZHQHO2ZCBwuNBoB0vCaAhHQKB/RkupS751fZQoaAZHQHMjBb4agmJoB00VAWgIR0Cgf0YQ8OkMdX2UKGgGR0ByVlTQ3PzGaAdLzWgIR0Cgf0+XZ5AydX2UKGgGR0BvFTfaYeDGaAdL1GgIR0Cgf07jtG/fdX2UKGgGR0BzX1mEoOQRaAdL92gIR0Cgf13yiEg4dX2UKGgGR0BvuMHD7655aAdL1GgIR0Cgf4gxBVuKdX2UKGgGR0BzH9orWiDeaAdL02gIR0Cgf5cPnSv1dX2UKGgGR0BzHY8wHqu9aAdL7WgIR0CggDqjBVMmdX2UKGgGR0Bj/Hai9IwuaAdN6ANoCEdAoIBi79Q40nV9lChoBkdAcD28ZDRc/2gHS+1oCEdAoIBpKODJ2nV9lChoBkdAc8Ujin5zo2gHS9BoCEdAoICA62fCh3V9lChoBkdAcTYe4kNWl2gHTQsBaAhHQKCA6PS2H+J1fZQoaAZHQHKspAhStNloB0v1aAhHQKCA/jghr311fZQoaAZHQHEsWjoIOYpoB0uoaAhHQKCBSM1CPZJ1fZQoaAZHQHAm3XAdn01oB0vHaAhHQKCBRGe+VTt1fZQoaAZHQHC3NUKiPABoB0vNaAhHQKCBXK2a2F51fZQoaAZHQHGWRiG34KxoB0u8aAhHQKCBvEpAlfJ1fZQoaAZHQHDiWd3B55ZoB0vEaAhHQKCB2yAxzq91fZQoaAZHQHDWLO7g88toB0vbaAhHQKCCO6IWP911fZQoaAZHQHKeUlZ5iVloB0vWaAhHQKCCWDg62fF1fZQoaAZHQHEkKNVBD5VoB0vcaAhHQKCCezkZJkJ1fZQoaAZHQHI0vpMYdhloB0vAaAhHQKCC+OMl1KZ1fZQoaAZHQG7Tn8sMAm1oB0vNaAhHQKCDCioKlYV1fZQoaAZHQHBdgPI4lyBoB0vYaAhHQKCDC7wrlNl1fZQoaAZHQG+/ZksjFAFoB0vlaAhHQKCDZJRO1v51fZQoaAZHQHB/lQl8gIRoB0vPaAhHQKCDuyeI2wV1fZQoaAZHQHBLDltCRfZoB0vEaAhHQKCD64gA6uJ1fZQoaAZHQG2Lm1pj+aVoB0vIaAhHQKCD957gKnh1fZQoaAZHQHRoI2XLNfRoB0v4aAhHQKCEPXGOuJV1fZQoaAZHQHMRoLPUrkNoB0vFaAhHQKCEeS8rZrZ1fZQoaAZHQHIK4l2NedFoB0vOaAhHQKCEvahYeT51fZQoaAZHQHDv0ZrHlwNoB0vWaAhHQKCFqUQkHD91fZQoaAZHQHFP8MuvlltoB0u3aAhHQKCGBXOnl4l1fZQoaAZHQHN4gHqu8sdoB00DAWgIR0CghoCqZML4dX2UKGgGR0BuQXkRzzVdaAdL8GgIR0CghoRv3rUtdX2UKGgGR0Bw1rhqCYkWaAdLymgIR0CghpWTxG2DdX2UKGgGR0ByYe2qkuYhaAdLyWgIR0CghxaEzwc6dX2UKGgGR0Bvfgqbz9S/aAdLu2gIR0Cgh0VrAP/adX2UKGgGR0BwPLBuXNTtaAdLv2gIR0Cgh7Zf+jubdX2UKGgGR0By1Jgy/KyOaAdLzWgIR0Cgh/JQLux9dX2UKGgGR0Bx/oRmK64EaAdLwWgIR0CgiCebmU4adX2UKGgGR0Bzu7gP3BYWaAdLv2gIR0CgiHtKRMewdX2UKGgGR0BwPb3L3bmEaAdLx2gIR0CgiRGN70FsdX2UKGgGR0BwZZgjQiRoaAdLuGgIR0CgicC+De0pdX2UKGgGR0ByQ7YQJ5VwaAdNXQFoCEdAoInOgzxgA3V9lChoBkdAcvaV1fVqe2gHS8loCEdAoIqOce8wpXV9lChoBkdAcMjmWdEsrmgHS8VoCEdAoIr4sNDtxHV9lChoBkdAcmmews5GSmgHS7hoCEdAoIuP+uNgjXV9lChoBkdAcO3e/Yao/GgHS9FoCEdAoIv8bvPTonV9lChoBkdAcKgQTEit72gHS7loCEdAoIxgGpuMuXV9lChoBkdAckkcMmWt2mgHS9BoCEdAoIy6jtXxOXV9lChoBkdAcj9hPTG5tmgHS71oCEdAoIzCIP9UCXV9lChoBkdAcR222G7Bf2gHTQoBaAhHQKCM3Fqi48V1fZQoaAZHQG60IHcDbJxoB0vNaAhHQKCNflI3BHl1fZQoaAZHQHFfARXfZVZoB0u7aAhHQKCNvSiudPN1fZQoaAZHQG6a+yJKraNoB0vGaAhHQKCO05RTCLx1fZQoaAZHQG8o1Z1V5rxoB0vSaAhHQKCPFbL2YfJ1fZQoaAZHQHKFwLJCBwxoB0vBaAhHQKCPgJjUd7x1fZQoaAZHQHHy01uR9w5oB0u3aAhHQKCPopo9LYh1fZQoaAZHQG5CU5lvqC9oB0vNaAhHQKCQZHy3CsR1fZQoaAZHQHFBJO8CgbpoB0vAaAhHQKCQ9gpBomJ1fZQoaAZHQHBi20qpcX5oB0u8aAhHQKCRq/pt78h1fZQoaAZHQHB9XjIaLn9oB0vhaAhHQKCRsKlYU351fZQoaAZHQHACLrLQokRoB0vtaAhHQKCR1qRlpXZ1fZQoaAZHQG4Do+wC8vpoB0vRaAhHQKCR418b70p1fZQoaAZHQGWhE4WDYiBoB03oA2gIR0CgkhcSf16FdX2UKGgGR0BdEJSrHU+caAdN6ANoCEdAoJIjaAWi13V9lChoBkdAcDAUyYXwb2gHS+NoCEdAoJMRradtmHV9lChoBkdAcaryLAHmimgHS9poCEdAoJMUm+j/MnV9lChoBkdAcEJi5d4VymgHS9toCEdAoJNX/io86nV9lChoBkdAcCvmvnr6cmgHS8VoCEdAoJPVAZ88cXV9lChoBkdAZSUnsLORkmgHTegDaAhHQKCUq2P1ct51fZQoaAZHQHI1gfyPMjhoB0vtaAhHQKCVBfO2RaJ1fZQoaAZHQHE9b1h9b5doB0vBaAhHQKCVECr92ox1fZQoaAZHQHDq7tE5QxhoB0vBaAhHQKCVG3DvVmV1fZQoaAZHQHDs9g0CRwJoB0vgaAhHQKCVYs3AEdN1fZQoaAZHQHBd9jCpFThoB0vqaAhHQKCViqioKlZ1fZQoaAZHQHG9aV+qioNoB0vgaAhHQKCVsunuRcN1fZQoaAZHQHICwmAskIJoB0vhaAhHQKCVwAksz2x1fZQoaAZHQHJx9gF5fMRoB0vdaAhHQKCWgcvM8ox1fZQoaAZHQHJ182NvOyFoB0vUaAhHQKCWo/UvwmV1fZQoaAZHQG8UriuMdcVoB0vMaAhHQKCW+flp48l1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 380,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
lunar_lander_1m/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f66ed6a639232093b57ad563378fe1d0806b66bf4bc56306cb4a33a67f4fc32f
3
+ size 87929
lunar_lander_1m/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad6386073b3ed4e7854a9e88a664efe2f74b069018a11f9f61c39826d4d5efac
3
+ size 43329
lunar_lander_1m/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_1m/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (158 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.0686634, "std_reward": 18.742508828690276, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-07T21:26:14.104321"}