--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - pankajmathur/Mistral-7B-model_45k6e2e4 - transformers - pytorch - mistral - text-generation - en - dataset:pankajmathur/orca_mini_v1_dataset - dataset:pankajmathur/WizardLM_Orca - dataset:pankajmathur/dolly-v2_orca - dataset:pankajmathur/alpaca_orca - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us --- # Mistral-7B-model_45k6e2e4-Mistral-7B-Instruct-v0.1 Mistral-7B-model_45k6e2e4-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [pankajmathur/Mistral-7B-model_45k6e2e4](https://huggingface.co/pankajmathur/Mistral-7B-model_45k6e2e4) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: pankajmathur/Mistral-7B-model_45k6e2e4 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Mistral-7B-model_45k6e2e4-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```