File size: 1,727 Bytes
6d0fdf4
b581158
6d0fdf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e4e41
6d0fdf4
 
 
 
 
 
 
 
 
17e4e41
6d0fdf4
 
 
 
 
17e4e41
6d0fdf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e4e41
6d0fdf4
 
 
 
 
 
 
17e4e41
 
6d0fdf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- chat
- qwen
- qwen2
- finetune
- chatml
- OpenHermes-2.5
- HelpSteer2
- Orca
- SlimOrca
library_name: transformers
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
base_model: Qwen/Qwen2-7B
model_name: calme-2.7-qwen2-7b
datasets:
- nvidia/HelpSteer2
- teknium/OpenHermes-2.5
- microsoft/orca-math-word-problems-200k
- Open-Orca/SlimOrca
---

<img src="./qwen2-fine-tunes-maziyar-panahi.webp" alt="Qwen2 fine-tune" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# MaziyarPanahi/calme-2.7-qwen2-7b

This is a fine-tuned version of the `Qwen/Qwen2-7B` model. It aims to improve the base model across all benchmarks.

# ⚡ Quantized GGUF

All GGUF models are available here: [MaziyarPanahi/calme-2.7-qwen2-7b-GGUF](https://huggingface.co/MaziyarPanahi/calme-2.7-qwen2-7b-GGUF)

# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

coming soon!


# Prompt Template

This model uses `ChatML` prompt template:

```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````

# How to use


```python

# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.7-qwen2-7b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.7-qwen2-7b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.7-qwen2-7b")
```