File size: 4,031 Bytes
e25a6c9
9645c99
e25a6c9
 
 
9645c99
 
 
 
 
 
620c22c
ee68480
e25a6c9
 
 
 
9645c99
 
 
e25a6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d633329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25a6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
- gemma
- 7b
- alpaca
- peft
- lora
- qlora
- openhermes
- transformers
base_model: google/gemma-7b
model-index:
- name: gemma-7b-Open-Hermes-v0.1
  results: []
datasets:
- teknium/openhermes
pipeline_tag: text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
# use google/gemma-7b if you have access
#base_model: mhenrichsen/gemma-7b
base_model: google/gemma-7b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hub_model_id: MaziyarPanahi/gemma-7b-Open-Hermes-v0.1
hf_use_auth_token: true

load_in_8bit: false
load_in_4bit: true
strict: false

# huggingface repo
datasets:
  - path: teknium/openhermes
    type: alpaca
val_set_size: 0.1
output_dir: ./qlora-gemma-7b-openhermes

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true


sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```

</details><br>

# gemma-7b-Open-Hermes-v0.1

This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4456

## How to use

**PEFT**
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1"

config = PeftConfig.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = PeftModel.from_pretrained(model, model_id)
```

**Transformers**
```python
# Use a pipeline as a high-level helper
from transformers import pipeline

model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1"

pipe = pipeline("text-generation", model=model_id)

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
```

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 227
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3258        | 0.0   | 1    | 1.9697          |
| 0.63          | 0.25  | 2277 | 1.5227          |
| 0.642         | 0.5   | 4554 | 1.4835          |
| 0.7721        | 0.75  | 6831 | 1.4456          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0