End of training
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: cardiffnlp_twitter_roberta_base_sentiment_latest_Nov2023
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# cardiffnlp_twitter_roberta_base_sentiment_latest_Nov2023
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3189
|
20 |
+
- Accuracy: 0.805
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 2
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.6619 | 0.2 | 100 | 0.5226 | 0.6285 |
|
53 |
+
| 0.4526 | 0.4 | 200 | 0.4150 | 0.716 |
|
54 |
+
| 0.4092 | 0.6 | 300 | 0.3898 | 0.728 |
|
55 |
+
| 0.3886 | 0.8 | 400 | 0.3441 | 0.773 |
|
56 |
+
| 0.3822 | 1.0 | 500 | 0.3494 | 0.767 |
|
57 |
+
| 0.3396 | 1.2 | 600 | 0.3470 | 0.7865 |
|
58 |
+
| 0.3156 | 1.4 | 700 | 0.3418 | 0.7875 |
|
59 |
+
| 0.3099 | 1.6 | 800 | 0.3231 | 0.794 |
|
60 |
+
| 0.2994 | 1.8 | 900 | 0.3371 | 0.7885 |
|
61 |
+
| 0.2907 | 2.0 | 1000 | 0.3189 | 0.805 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.35.0
|
67 |
+
- Pytorch 2.1.0+cu118
|
68 |
+
- Datasets 2.14.6
|
69 |
+
- Tokenizers 0.14.1
|