File size: 2,924 Bytes
74966e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a67e5
 
74966e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a67e5
 
 
74966e1
 
 
99a67e5
 
74966e1
 
 
 
 
99a67e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74966e1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results_distilbert-base-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results_distilbert-base-uncased

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3782
- Accuracy: 0.744

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6859        | 0.12  | 30   | 0.6867          | 0.304    |
| 0.6759        | 0.24  | 60   | 0.6723          | 0.3535   |
| 0.6508        | 0.36  | 90   | 0.6433          | 0.43     |
| 0.6046        | 0.48  | 120  | 0.5999          | 0.4915   |
| 0.5845        | 0.6   | 150  | 0.5733          | 0.491    |
| 0.579         | 0.72  | 180  | 0.5633          | 0.6455   |
| 0.5599        | 0.84  | 210  | 0.5484          | 0.5705   |
| 0.526         | 0.96  | 240  | 0.5208          | 0.679    |
| 0.4968        | 1.08  | 270  | 0.4765          | 0.7115   |
| 0.4763        | 1.2   | 300  | 0.4524          | 0.7165   |
| 0.4565        | 1.32  | 330  | 0.4341          | 0.7205   |
| 0.4345        | 1.44  | 360  | 0.4254          | 0.7235   |
| 0.4338        | 1.56  | 390  | 0.4161          | 0.73     |
| 0.4292        | 1.68  | 420  | 0.4119          | 0.729    |
| 0.4129        | 1.8   | 450  | 0.4061          | 0.7345   |
| 0.4036        | 1.92  | 480  | 0.3966          | 0.739    |
| 0.4019        | 2.04  | 510  | 0.3984          | 0.726    |
| 0.3794        | 2.16  | 540  | 0.3961          | 0.74     |
| 0.3756        | 2.28  | 570  | 0.3981          | 0.728    |
| 0.4565        | 2.4   | 600  | 0.3903          | 0.73     |
| 0.376         | 2.52  | 630  | 0.3997          | 0.7285   |
| 0.4023        | 2.64  | 660  | 0.3850          | 0.7435   |
| 0.3511        | 2.76  | 690  | 0.3802          | 0.742    |
| 0.3601        | 2.88  | 720  | 0.3782          | 0.744    |
| 0.3771        | 3.0   | 750  | 0.3792          | 0.742    |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1