--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results_distilbert-base-uncased results: [] --- # results_distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3782 - Accuracy: 0.744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6859 | 0.12 | 30 | 0.6867 | 0.304 | | 0.6759 | 0.24 | 60 | 0.6723 | 0.3535 | | 0.6508 | 0.36 | 90 | 0.6433 | 0.43 | | 0.6046 | 0.48 | 120 | 0.5999 | 0.4915 | | 0.5845 | 0.6 | 150 | 0.5733 | 0.491 | | 0.579 | 0.72 | 180 | 0.5633 | 0.6455 | | 0.5599 | 0.84 | 210 | 0.5484 | 0.5705 | | 0.526 | 0.96 | 240 | 0.5208 | 0.679 | | 0.4968 | 1.08 | 270 | 0.4765 | 0.7115 | | 0.4763 | 1.2 | 300 | 0.4524 | 0.7165 | | 0.4565 | 1.32 | 330 | 0.4341 | 0.7205 | | 0.4345 | 1.44 | 360 | 0.4254 | 0.7235 | | 0.4338 | 1.56 | 390 | 0.4161 | 0.73 | | 0.4292 | 1.68 | 420 | 0.4119 | 0.729 | | 0.4129 | 1.8 | 450 | 0.4061 | 0.7345 | | 0.4036 | 1.92 | 480 | 0.3966 | 0.739 | | 0.4019 | 2.04 | 510 | 0.3984 | 0.726 | | 0.3794 | 2.16 | 540 | 0.3961 | 0.74 | | 0.3756 | 2.28 | 570 | 0.3981 | 0.728 | | 0.4565 | 2.4 | 600 | 0.3903 | 0.73 | | 0.376 | 2.52 | 630 | 0.3997 | 0.7285 | | 0.4023 | 2.64 | 660 | 0.3850 | 0.7435 | | 0.3511 | 2.76 | 690 | 0.3802 | 0.742 | | 0.3601 | 2.88 | 720 | 0.3782 | 0.744 | | 0.3771 | 3.0 | 750 | 0.3792 | 0.742 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1