Upload folder using huggingface_hub
Browse files- .python-version +1 -0
- __pycache__/handler.cpython-311.pyc +0 -0
- __pycache__/handler.cpython-39.pyc +0 -0
- handler.py +19 -12
- test_endpoint.ipynb +0 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.9
|
__pycache__/handler.cpython-311.pyc
ADDED
Binary file (3.6 kB). View file
|
|
__pycache__/handler.cpython-39.pyc
CHANGED
Binary files a/__pycache__/handler.cpython-39.pyc and b/__pycache__/handler.cpython-39.pyc differ
|
|
handler.py
CHANGED
@@ -5,6 +5,8 @@ from typing import Dict, Any, List
|
|
5 |
import requests
|
6 |
import numpy as np
|
7 |
from fashion_clip.fashion_clip import FashionCLIP
|
|
|
|
|
8 |
|
9 |
|
10 |
class EndpointHandler:
|
@@ -23,30 +25,35 @@ class EndpointHandler:
|
|
23 |
List[Dict[str, Any]]: The embeddings for the text and/or images.
|
24 |
"""
|
25 |
# Extract text and images from the input data
|
26 |
-
texts = data.get("text", [])
|
27 |
-
images = data.get("image", [])
|
|
|
28 |
|
29 |
# Convert image URLs to PIL Images if needed
|
30 |
images = [self._load_image(img) for img in images]
|
31 |
|
32 |
-
|
33 |
-
text_embeddings = self.fclip.encode_text(texts, batch_size=32)
|
34 |
-
|
35 |
-
image_embeddings = image_embeddings/np.linalg.norm(image_embeddings, ord=2, axis=-1, keepdims=True)
|
36 |
-
text_embeddings = text_embeddings/np.linalg.norm(text_embeddings, ord=2, axis=-1, keepdims=True)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
return results
|
44 |
|
45 |
def _load_image(self, img):
|
46 |
-
"""Helper function to load an image from a URL, PIL Image,
|
47 |
if isinstance(img, str):
|
48 |
# If the image is a URL
|
49 |
img = Image.open(requests.get(img, stream=True).raw)
|
|
|
|
|
|
|
50 |
elif isinstance(img, Image.Image):
|
51 |
# If the image is already a PIL Image
|
52 |
pass
|
|
|
5 |
import requests
|
6 |
import numpy as np
|
7 |
from fashion_clip.fashion_clip import FashionCLIP
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
|
11 |
|
12 |
class EndpointHandler:
|
|
|
25 |
List[Dict[str, Any]]: The embeddings for the text and/or images.
|
26 |
"""
|
27 |
# Extract text and images from the input data
|
28 |
+
texts = data['inputs'].get("text", [])
|
29 |
+
images = data['inputs'].get("image", [])
|
30 |
+
|
31 |
|
32 |
# Convert image URLs to PIL Images if needed
|
33 |
images = [self._load_image(img) for img in images]
|
34 |
|
35 |
+
results = {}
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
if images:
|
38 |
+
image_embeddings = self.fclip.encode_images(images, batch_size=32)
|
39 |
+
image_embeddings = image_embeddings/np.linalg.norm(image_embeddings, ord=2, axis=-1, keepdims=True)
|
40 |
+
results["image_embeddings"] = image_embeddings.tolist()
|
41 |
+
|
42 |
+
if texts:
|
43 |
+
text_embeddings = self.fclip.encode_text(texts, batch_size=32)
|
44 |
+
text_embeddings = text_embeddings/np.linalg.norm(text_embeddings, ord=2, axis=-1, keepdims=True)
|
45 |
+
results["text_embeddings"] = text_embeddings.tolist()
|
46 |
|
47 |
return results
|
48 |
|
49 |
def _load_image(self, img):
|
50 |
+
"""Helper function to load an image from a URL, PIL Image, numpy array, or bytes."""
|
51 |
if isinstance(img, str):
|
52 |
# If the image is a URL
|
53 |
img = Image.open(requests.get(img, stream=True).raw)
|
54 |
+
elif isinstance(img, bytes):
|
55 |
+
# If the image is in bytes
|
56 |
+
img = Image.open(BytesIO(img))
|
57 |
elif isinstance(img, Image.Image):
|
58 |
# If the image is already a PIL Image
|
59 |
pass
|
test_endpoint.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|