YC-Chen commited on
Commit
adcdf10
·
verified ·
1 Parent(s): 273739b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -6,16 +6,16 @@ language:
6
  - en
7
  ---
8
 
9
- # Model Card for Breeze-7B-Base-v0.1
10
 
11
  Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
12
 
13
- [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) is the base model for the Breeze-7B series.
14
  It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
15
 
16
- [Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
17
 
18
- [Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) is a slightly modified version of
19
  Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.
20
 
21
  The current release version of Breeze-7B is v0.1.
@@ -34,30 +34,30 @@ Performance-wise:
34
 
35
  ## Features
36
 
37
- - Breeze-7B-Base-v0.1
38
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
39
  - 8k-token context length
40
- - Breeze-7B-Instruct-v0.1
41
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
42
  - 8k-token context length
43
  - Multi-turn dialogue (without special handling for harmfulness)
44
- - Breeze-7B-Instruct-64k-v0.1
45
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
46
  - 64k-token context length
47
  - Multi-turn dialogue (without special handling for harmfulness)
48
 
49
  ## Model Details
50
 
51
- - Breeze-7B-Base-v0.1
52
  - Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
53
  - Model type: Causal decoder-only transformer language model
54
  - Language: English and Traditional Chinese (zh-tw)
55
- - Breeze-7B-Instruct-v0.1
56
- - Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1)
57
  - Model type: Causal decoder-only transformer language model
58
  - Language: English and Traditional Chinese (zh-tw)
59
- - Breeze-7B-Instruct-64k-v0.1
60
- - Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1)
61
  - Model type: Causal decoder-only transformer language model
62
  - Language: English and Traditional Chinese (zh-tw)
63
 
@@ -77,7 +77,7 @@ Performance-wise:
77
  | [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
78
  | [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
79
  | [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
80
- | [**Breeze-7B-Base-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 |
81
  | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
82
 
83
 
@@ -101,8 +101,8 @@ Performance-wise:
101
  | [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | 40.27 |7.9 | 70.00 | |
102
  | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
103
  | [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
104
- | [**Breeze-7B-Instruct-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | |
105
- | [**Breeze-7B-Instruct-64k-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) | 7B |5.5 | 40.99 | | | 36.11 |7.1 | 63.68 | |
106
  | [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
107
  | [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
108
  | [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
@@ -116,8 +116,8 @@ Performance-wise:
116
  | gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
117
  | Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
118
  | Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 |
119
- | **Breeze-7B-Instruct-v0.1** | 6.5 | 5.6 | 3.9 | 3.6 | 4.3 | 6.9 | 5.7 | 9.3 | 5.7 |
120
- | **Breeze-7B-Instruct-64k-v0.1** | 6.1 | 5.3 | 3.7 | 2.9 | 4.2 | 7.0 | 6.7 | 8.3 | 5.5 |
121
  | Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 |
122
  | Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
123
  | Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
@@ -145,8 +145,8 @@ All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel siz
145
  | Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
146
  |--------------------------------------------------------------------|-------------------|--------------------------|
147
  | Yi-6B-Chat | 10.62 | 5.2k |
148
- | **Breeze-7B-Instruct-v0.1** | 10.74 | 11.1k |
149
- | **Breeze-7B-Instruct-64k-v0.1** | 10.74 | 88.8k |
150
  | Qwen-7B-Chat | 10.86 | 9.8k |
151
  | Qwen-14B-Chat | 18.89 | 9.8k |
152
  | Mistral-7B-v0.1-Instruct | 20.48 | 5.1k |
@@ -176,13 +176,13 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
176
  import torch
177
 
178
  model = AutoModelForCausalLM.from_pretrained(
179
- model="MediaTek-Research/Breeze-7B-Base-v0.1",
180
  device_map="auto",
181
  torch_dtype=torch.bfloat16,
182
  attn_implementation="flash_attention_2" # optional
183
  )
184
  from transformers import AutoTokenizer
185
- tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Base-v0.1")
186
  tokenizer.tokenize("你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。")
187
  # Tokenized results
188
  # ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
 
6
  - en
7
  ---
8
 
9
+ # Model Card for Breeze-7B-Base-v0_1
10
 
11
  Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
12
 
13
+ [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) is the base model for the Breeze-7B series.
14
  It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
15
 
16
+ [Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
17
 
18
+ [Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0_1) is a slightly modified version of
19
  Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.
20
 
21
  The current release version of Breeze-7B is v0.1.
 
34
 
35
  ## Features
36
 
37
+ - Breeze-7B-Base-v0_1
38
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
39
  - 8k-token context length
40
+ - Breeze-7B-Instruct-v0_1
41
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
42
  - 8k-token context length
43
  - Multi-turn dialogue (without special handling for harmfulness)
44
+ - Breeze-7B-Instruct-64k-v0_1
45
  - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
46
  - 64k-token context length
47
  - Multi-turn dialogue (without special handling for harmfulness)
48
 
49
  ## Model Details
50
 
51
+ - Breeze-7B-Base-v0_1
52
  - Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
53
  - Model type: Causal decoder-only transformer language model
54
  - Language: English and Traditional Chinese (zh-tw)
55
+ - Breeze-7B-Instruct-v0_1
56
+ - Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1)
57
  - Model type: Causal decoder-only transformer language model
58
  - Language: English and Traditional Chinese (zh-tw)
59
+ - Breeze-7B-Instruct-64k-v0_1
60
+ - Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
61
  - Model type: Causal decoder-only transformer language model
62
  - Language: English and Traditional Chinese (zh-tw)
63
 
 
77
  | [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
78
  | [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
79
  | [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
80
+ | [**Breeze-7B-Base-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 |
81
  | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
82
 
83
 
 
101
  | [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | 40.27 |7.9 | 70.00 | |
102
  | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
103
  | [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
104
+ | [**Breeze-7B-Instruct-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | |
105
+ | [**Breeze-7B-Instruct-64k-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0_1) | 7B |5.5 | 40.99 | | | 36.11 |7.1 | 63.68 | |
106
  | [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
107
  | [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
108
  | [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
 
116
  | gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
117
  | Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
118
  | Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 |
119
+ | **Breeze-7B-Instruct-v0_1** | 6.5 | 5.6 | 3.9 | 3.6 | 4.3 | 6.9 | 5.7 | 9.3 | 5.7 |
120
+ | **Breeze-7B-Instruct-64k-v0_1** | 6.1 | 5.3 | 3.7 | 2.9 | 4.2 | 7.0 | 6.7 | 8.3 | 5.5 |
121
  | Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 |
122
  | Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
123
  | Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
 
145
  | Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
146
  |--------------------------------------------------------------------|-------------------|--------------------------|
147
  | Yi-6B-Chat | 10.62 | 5.2k |
148
+ | **Breeze-7B-Instruct-v0_1** | 10.74 | 11.1k |
149
+ | **Breeze-7B-Instruct-64k-v0_1** | 10.74 | 88.8k |
150
  | Qwen-7B-Chat | 10.86 | 9.8k |
151
  | Qwen-14B-Chat | 18.89 | 9.8k |
152
  | Mistral-7B-v0.1-Instruct | 20.48 | 5.1k |
 
176
  import torch
177
 
178
  model = AutoModelForCausalLM.from_pretrained(
179
+ model="MediaTek-Research/Breeze-7B-Base-v0_1",
180
  device_map="auto",
181
  torch_dtype=torch.bfloat16,
182
  attn_implementation="flash_attention_2" # optional
183
  )
184
  from transformers import AutoTokenizer
185
+ tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Base-v0_1")
186
  tokenizer.tokenize("你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。")
187
  # Tokenized results
188
  # ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']