Update README.md
Browse files
README.md
CHANGED
@@ -6,16 +6,16 @@ language:
|
|
6 |
- en
|
7 |
---
|
8 |
|
9 |
-
# Model Card for Breeze-7B-Base-
|
10 |
|
11 |
Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
|
12 |
|
13 |
-
[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-
|
14 |
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
|
15 |
|
16 |
-
[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-
|
17 |
|
18 |
-
[Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-
|
19 |
Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.
|
20 |
|
21 |
The current release version of Breeze-7B is v0.1.
|
@@ -34,30 +34,30 @@ Performance-wise:
|
|
34 |
|
35 |
## Features
|
36 |
|
37 |
-
- Breeze-7B-Base-
|
38 |
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
|
39 |
- 8k-token context length
|
40 |
-
- Breeze-7B-Instruct-
|
41 |
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
|
42 |
- 8k-token context length
|
43 |
- Multi-turn dialogue (without special handling for harmfulness)
|
44 |
-
- Breeze-7B-Instruct-64k-
|
45 |
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
|
46 |
- 64k-token context length
|
47 |
- Multi-turn dialogue (without special handling for harmfulness)
|
48 |
|
49 |
## Model Details
|
50 |
|
51 |
-
- Breeze-7B-Base-
|
52 |
- Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
53 |
- Model type: Causal decoder-only transformer language model
|
54 |
- Language: English and Traditional Chinese (zh-tw)
|
55 |
-
- Breeze-7B-Instruct-
|
56 |
-
- Finetuned from: [MediaTek-Research/Breeze-7B-Base-
|
57 |
- Model type: Causal decoder-only transformer language model
|
58 |
- Language: English and Traditional Chinese (zh-tw)
|
59 |
-
- Breeze-7B-Instruct-64k-
|
60 |
-
- Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-
|
61 |
- Model type: Causal decoder-only transformer language model
|
62 |
- Language: English and Traditional Chinese (zh-tw)
|
63 |
|
@@ -77,7 +77,7 @@ Performance-wise:
|
|
77 |
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
|
78 |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
|
79 |
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
|
80 |
-
| [**Breeze-7B-Base-
|
81 |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
|
82 |
|
83 |
|
@@ -101,8 +101,8 @@ Performance-wise:
|
|
101 |
| [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | 40.27 |7.9 | 70.00 | |
|
102 |
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
|
103 |
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
|
104 |
-
| [**Breeze-7B-Instruct-
|
105 |
-
| [**Breeze-7B-Instruct-64k-
|
106 |
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
|
107 |
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
|
108 |
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
|
@@ -116,8 +116,8 @@ Performance-wise:
|
|
116 |
| gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
|
117 |
| Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
|
118 |
| Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 |
|
119 |
-
| **Breeze-7B-Instruct-
|
120 |
-
| **Breeze-7B-Instruct-64k-
|
121 |
| Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 |
|
122 |
| Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
|
123 |
| Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
|
@@ -145,8 +145,8 @@ All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel siz
|
|
145 |
| Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|
146 |
|--------------------------------------------------------------------|-------------------|--------------------------|
|
147 |
| Yi-6B-Chat | 10.62 | 5.2k |
|
148 |
-
| **Breeze-7B-Instruct-
|
149 |
-
| **Breeze-7B-Instruct-64k-
|
150 |
| Qwen-7B-Chat | 10.86 | 9.8k |
|
151 |
| Qwen-14B-Chat | 18.89 | 9.8k |
|
152 |
| Mistral-7B-v0.1-Instruct | 20.48 | 5.1k |
|
@@ -176,13 +176,13 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
176 |
import torch
|
177 |
|
178 |
model = AutoModelForCausalLM.from_pretrained(
|
179 |
-
model="MediaTek-Research/Breeze-7B-Base-
|
180 |
device_map="auto",
|
181 |
torch_dtype=torch.bfloat16,
|
182 |
attn_implementation="flash_attention_2" # optional
|
183 |
)
|
184 |
from transformers import AutoTokenizer
|
185 |
-
tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Base-
|
186 |
tokenizer.tokenize("你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。")
|
187 |
# Tokenized results
|
188 |
# ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
|
|
|
6 |
- en
|
7 |
---
|
8 |
|
9 |
+
# Model Card for Breeze-7B-Base-v0_1
|
10 |
|
11 |
Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
|
12 |
|
13 |
+
[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) is the base model for the Breeze-7B series.
|
14 |
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
|
15 |
|
16 |
+
[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
|
17 |
|
18 |
+
[Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0_1) is a slightly modified version of
|
19 |
Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters.
|
20 |
|
21 |
The current release version of Breeze-7B is v0.1.
|
|
|
34 |
|
35 |
## Features
|
36 |
|
37 |
+
- Breeze-7B-Base-v0_1
|
38 |
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
|
39 |
- 8k-token context length
|
40 |
+
- Breeze-7B-Instruct-v0_1
|
41 |
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
|
42 |
- 8k-token context length
|
43 |
- Multi-turn dialogue (without special handling for harmfulness)
|
44 |
+
- Breeze-7B-Instruct-64k-v0_1
|
45 |
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
|
46 |
- 64k-token context length
|
47 |
- Multi-turn dialogue (without special handling for harmfulness)
|
48 |
|
49 |
## Model Details
|
50 |
|
51 |
+
- Breeze-7B-Base-v0_1
|
52 |
- Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
53 |
- Model type: Causal decoder-only transformer language model
|
54 |
- Language: English and Traditional Chinese (zh-tw)
|
55 |
+
- Breeze-7B-Instruct-v0_1
|
56 |
+
- Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1)
|
57 |
- Model type: Causal decoder-only transformer language model
|
58 |
- Language: English and Traditional Chinese (zh-tw)
|
59 |
+
- Breeze-7B-Instruct-64k-v0_1
|
60 |
+
- Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
|
61 |
- Model type: Causal decoder-only transformer language model
|
62 |
- Language: English and Traditional Chinese (zh-tw)
|
63 |
|
|
|
77 |
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
|
78 |
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
|
79 |
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
|
80 |
+
| [**Breeze-7B-Base-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 |
|
81 |
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
|
82 |
|
83 |
|
|
|
101 |
| [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | 40.27 |7.9 | 70.00 | |
|
102 |
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
|
103 |
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
|
104 |
+
| [**Breeze-7B-Instruct-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | |
|
105 |
+
| [**Breeze-7B-Instruct-64k-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0_1) | 7B |5.5 | 40.99 | | | 36.11 |7.1 | 63.68 | |
|
106 |
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
|
107 |
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
|
108 |
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
|
|
|
116 |
| gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
|
117 |
| Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
|
118 |
| Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 |
|
119 |
+
| **Breeze-7B-Instruct-v0_1** | 6.5 | 5.6 | 3.9 | 3.6 | 4.3 | 6.9 | 5.7 | 9.3 | 5.7 |
|
120 |
+
| **Breeze-7B-Instruct-64k-v0_1** | 6.1 | 5.3 | 3.7 | 2.9 | 4.2 | 7.0 | 6.7 | 8.3 | 5.5 |
|
121 |
| Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 |
|
122 |
| Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
|
123 |
| Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
|
|
|
145 |
| Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)|
|
146 |
|--------------------------------------------------------------------|-------------------|--------------------------|
|
147 |
| Yi-6B-Chat | 10.62 | 5.2k |
|
148 |
+
| **Breeze-7B-Instruct-v0_1** | 10.74 | 11.1k |
|
149 |
+
| **Breeze-7B-Instruct-64k-v0_1** | 10.74 | 88.8k |
|
150 |
| Qwen-7B-Chat | 10.86 | 9.8k |
|
151 |
| Qwen-14B-Chat | 18.89 | 9.8k |
|
152 |
| Mistral-7B-v0.1-Instruct | 20.48 | 5.1k |
|
|
|
176 |
import torch
|
177 |
|
178 |
model = AutoModelForCausalLM.from_pretrained(
|
179 |
+
model="MediaTek-Research/Breeze-7B-Base-v0_1",
|
180 |
device_map="auto",
|
181 |
torch_dtype=torch.bfloat16,
|
182 |
attn_implementation="flash_attention_2" # optional
|
183 |
)
|
184 |
from transformers import AutoTokenizer
|
185 |
+
tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Base-v0_1")
|
186 |
tokenizer.tokenize("你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。")
|
187 |
# Tokenized results
|
188 |
# ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
|