YC-Chen commited on
Commit
b167725
·
verified ·
1 Parent(s): 32f42cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -16
README.md CHANGED
@@ -24,9 +24,11 @@ Practicality-wise:
24
  - Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
25
  - In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.
26
 
 
27
  Performance-wise:
28
  - Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
29
 
 
30
  *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
31
 
32
  ## Features
@@ -107,9 +109,8 @@ Performance-wise:
107
 
108
  \* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
109
 
110
- **Details of MT-Bench-tw (0 shot):**
111
 
112
- | Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG |
113
  |-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
114
  | gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
115
  | Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
@@ -121,9 +122,8 @@ Performance-wise:
121
  | Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
122
  | Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
123
 
124
- **Details of TMMLU+ (0 shot):**
125
 
126
- | Model | STEM | Social Science | Humanities | Other | ↑ AVG |
127
  |-----------------------------------------------------|--------------|----------------|------------|------------|---------|
128
  | Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
129
  | Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
@@ -174,19 +174,15 @@ pip install flash-attn
174
  ```
175
  Then load the model in transformers:
176
  ```python
177
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
178
-
179
- model = AutoModelForCausalLM.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1")
180
- tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1")
181
-
182
- # you can also using pipeline
183
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
184
- generator(
185
- "請問台灣最高的山是",
186
- max_length=30,
187
- num_return_sequences=1,
188
  )
189
-
190
  ```
191
 
192
  The structure of the query template follows that of Mistral-7B-Instruct, as shown below.
 
24
  - Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
25
  - In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.
26
 
27
+
28
  Performance-wise:
29
  - Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
30
 
31
+
32
  *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
33
 
34
  ## Features
 
109
 
110
  \* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
111
 
 
112
 
113
+ | Details of MT-Bench-tw (0 shot):<br/>Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG |
114
  |-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
115
  | gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
116
  | Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
 
122
  | Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
123
  | Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
124
 
 
125
 
126
+ | Details of TMMLU+ (0 shot):<br/>Model | STEM | Social Science | Humanities | Other | ↑ AVG |
127
  |-----------------------------------------------------|--------------|----------------|------------|------------|---------|
128
  | Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
129
  | Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
 
174
  ```
175
  Then load the model in transformers:
176
  ```python
177
+ from transformers import AutoModelForCausalLM, AutoTokenizer
178
+ import torch
179
+
180
+ model = AutoModelForCausalLM.from_pretrained(
181
+ model="MediaTek-Research/Breeze-7B-Instruct-v0.1",
182
+ device_map="auto",
183
+ torch_dtype=torch.bfloat16,
184
+ use_flash_attn_2=True # optional
 
 
 
185
  )
 
186
  ```
187
 
188
  The structure of the query template follows that of Mistral-7B-Instruct, as shown below.