Update README.md
Browse files
README.md
CHANGED
@@ -24,9 +24,11 @@ Practicality-wise:
|
|
24 |
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
|
25 |
- In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.
|
26 |
|
|
|
27 |
Performance-wise:
|
28 |
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
|
29 |
|
|
|
30 |
*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
|
31 |
|
32 |
## Features
|
@@ -107,9 +109,8 @@ Performance-wise:
|
|
107 |
|
108 |
\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
|
109 |
|
110 |
-
**Details of MT-Bench-tw (0 shot):**
|
111 |
|
112 |
-
| Models
|
113 |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|
114 |
| gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
|
115 |
| Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
|
@@ -121,9 +122,8 @@ Performance-wise:
|
|
121 |
| Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
|
122 |
| Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
|
123 |
|
124 |
-
**Details of TMMLU+ (0 shot):**
|
125 |
|
126 |
-
| Model
|
127 |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
|
128 |
| Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
|
129 |
| Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
|
@@ -174,19 +174,15 @@ pip install flash-attn
|
|
174 |
```
|
175 |
Then load the model in transformers:
|
176 |
```python
|
177 |
-
from transformers import
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
"請問台灣最高的山是",
|
186 |
-
max_length=30,
|
187 |
-
num_return_sequences=1,
|
188 |
)
|
189 |
-
|
190 |
```
|
191 |
|
192 |
The structure of the query template follows that of Mistral-7B-Instruct, as shown below.
|
|
|
24 |
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
|
25 |
- In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level.
|
26 |
|
27 |
+
|
28 |
Performance-wise:
|
29 |
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
|
30 |
|
31 |
+
|
32 |
*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
|
33 |
|
34 |
## Features
|
|
|
109 |
|
110 |
\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
|
111 |
|
|
|
112 |
|
113 |
+
| Details of MT-Bench-tw (0 shot):<br/>Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG |
|
114 |
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|
115 |
| gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
|
116 |
| Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
|
|
|
122 |
| Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
|
123 |
| Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
|
124 |
|
|
|
125 |
|
126 |
+
| Details of TMMLU+ (0 shot):<br/>Model | STEM | Social Science | Humanities | Other | ↑ AVG |
|
127 |
|-----------------------------------------------------|--------------|----------------|------------|------------|---------|
|
128 |
| Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
|
129 |
| Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
|
|
|
174 |
```
|
175 |
Then load the model in transformers:
|
176 |
```python
|
177 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
178 |
+
import torch
|
179 |
+
|
180 |
+
model = AutoModelForCausalLM.from_pretrained(
|
181 |
+
model="MediaTek-Research/Breeze-7B-Instruct-v0.1",
|
182 |
+
device_map="auto",
|
183 |
+
torch_dtype=torch.bfloat16,
|
184 |
+
use_flash_attn_2=True # optional
|
|
|
|
|
|
|
185 |
)
|
|
|
186 |
```
|
187 |
|
188 |
The structure of the query template follows that of Mistral-7B-Instruct, as shown below.
|