npvinHnivqn commited on
Commit
9b878e3
·
verified ·
1 Parent(s): 0f9f47a

Update README file

Browse files
Files changed (1) hide show
  1. README.md +25 -25
README.md CHANGED
@@ -6,54 +6,54 @@ tags: []
6
  ## Original result
7
  ```
8
  IoU metric: bbox
9
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
10
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
11
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
12
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
13
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
14
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
15
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
16
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
17
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
18
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
19
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
20
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
21
  ```
22
 
23
  ## After training result
24
  ```
25
  IoU metric: bbox
26
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
27
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
28
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
29
  Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
30
  Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
31
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
32
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
33
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
34
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
35
  Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
36
  Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
37
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
38
  ```
39
 
40
  ## Config
41
- - dataset: NIH
42
  - original model: hustvl/yolos-tiny
43
  - lr: 0.0001
44
  - dropout_rate: 0.1
45
  - weight_decay: 0.0001
46
  - max_epochs: 1
47
- - train samples: 7
48
 
49
  ## Logging
50
  ### Training process
51
  ```
52
- {'validation_loss': tensor(7.8884), 'validation_loss_ce': tensor(3.2805), 'validation_loss_bbox': tensor(0.4682), 'validation_loss_giou': tensor(1.1333), 'validation_cardinality_error': tensor(99.4286)}
53
- {'training_loss': tensor(7.8884), 'train_loss_ce': tensor(3.2805), 'train_loss_bbox': tensor(0.4682), 'train_loss_giou': tensor(1.1333), 'train_cardinality_error': tensor(99.4286), 'validation_loss': tensor(6.6633), 'validation_loss_ce': tensor(2.8980), 'validation_loss_bbox': tensor(0.3610), 'validation_loss_giou': tensor(0.9802), 'validation_cardinality_error': tensor(99.4286)}
54
  ```
55
 
56
  ## Examples
57
- {'size': tensor([512, 512]), 'image_id': tensor([28719]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([3072, 3072])}
58
 
59
  ![Example](./example.png)
 
6
  ## Original result
7
  ```
8
  IoU metric: bbox
9
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
10
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005
11
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.005
12
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.203
13
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.068
14
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
15
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.029
16
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.029
17
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.029
18
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.200
19
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.067
20
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.029
21
  ```
22
 
23
  ## After training result
24
  ```
25
  IoU metric: bbox
26
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009
27
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.020
28
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.008
29
  Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
30
  Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
31
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009
32
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.043
33
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.076
34
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.087
35
  Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
36
  Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
37
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.089
38
  ```
39
 
40
  ## Config
41
+ - dataset: VinXray
42
  - original model: hustvl/yolos-tiny
43
  - lr: 0.0001
44
  - dropout_rate: 0.1
45
  - weight_decay: 0.0001
46
  - max_epochs: 1
47
+ - train samples: 67234
48
 
49
  ## Logging
50
  ### Training process
51
  ```
52
+ {'validation_loss': tensor(8.5927, device='cuda:0'), 'validation_loss_ce': tensor(3.4775, device='cuda:0'), 'validation_loss_bbox': tensor(0.5756, device='cuda:0'), 'validation_loss_giou': tensor(1.1184, device='cuda:0'), 'validation_cardinality_error': tensor(99.5938, device='cuda:0')}
53
+ {'training_loss': tensor(1.3630, device='cuda:0'), 'train_loss_ce': tensor(0.2593, device='cuda:0'), 'train_loss_bbox': tensor(0.0803, device='cuda:0'), 'train_loss_giou': tensor(0.3511, device='cuda:0'), 'train_cardinality_error': tensor(0.5294, device='cuda:0'), 'validation_loss': tensor(1.5262, device='cuda:0'), 'validation_loss_ce': tensor(0.2351, device='cuda:0'), 'validation_loss_bbox': tensor(0.0827, device='cuda:0'), 'validation_loss_giou': tensor(0.4389, device='cuda:0'), 'validation_cardinality_error': tensor(0.4794, device='cuda:0')}
54
  ```
55
 
56
  ## Examples
57
+ {'size': tensor([560, 512]), 'image_id': tensor([1]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([2580, 2332])}
58
 
59
  ![Example](./example.png)