--- library_name: transformers tags: [] --- ## Original result ``` IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.005 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.203 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.068 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.029 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.029 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.029 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.200 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.067 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.029 ``` ## After training result ``` IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.020 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.008 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.043 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.076 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.087 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.089 ``` ## Config - dataset: VinXray - original model: hustvl/yolos-tiny - lr: 0.0001 - dropout_rate: 0.1 - weight_decay: 0.0001 - max_epochs: 1 - train samples: 67234 ## Logging ### Training process ``` {'validation_loss': tensor(8.5927, device='cuda:0'), 'validation_loss_ce': tensor(3.4775, device='cuda:0'), 'validation_loss_bbox': tensor(0.5756, device='cuda:0'), 'validation_loss_giou': tensor(1.1184, device='cuda:0'), 'validation_cardinality_error': tensor(99.5938, device='cuda:0')} {'training_loss': tensor(1.3630, device='cuda:0'), 'train_loss_ce': tensor(0.2593, device='cuda:0'), 'train_loss_bbox': tensor(0.0803, device='cuda:0'), 'train_loss_giou': tensor(0.3511, device='cuda:0'), 'train_cardinality_error': tensor(0.5294, device='cuda:0'), 'validation_loss': tensor(1.5262, device='cuda:0'), 'validation_loss_ce': tensor(0.2351, device='cuda:0'), 'validation_loss_bbox': tensor(0.0827, device='cuda:0'), 'validation_loss_giou': tensor(0.4389, device='cuda:0'), 'validation_cardinality_error': tensor(0.4794, device='cuda:0')} ``` ## Examples {'size': tensor([560, 512]), 'image_id': tensor([1]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([2580, 2332])} ![Example](./example.png)