File size: 4,847 Bytes
bc053f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta_AGRO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta_AGRO

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1553
- Exact Match: 28.8571
- F1 Score: 57.3777

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 3407
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 50

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Exact Match | F1 Score |
|:-------------:|:------:|:----:|:---------------:|:-----------:|:--------:|
| 5.8392        | 0.0053 | 1    | 5.8105          | 0.0         | 8.3419   |
| 5.8343        | 0.0107 | 2    | 5.7849          | 0.0         | 8.4316   |
| 5.7993        | 0.0160 | 3    | 5.7441          | 0.0         | 8.4504   |
| 5.7869        | 0.0214 | 4    | 5.6912          | 0.0         | 8.5621   |
| 5.7257        | 0.0267 | 5    | 5.5845          | 0.0         | 8.7289   |
| 5.6119        | 0.0321 | 6    | 5.3128          | 0.0         | 9.0780   |
| 5.4565        | 0.0374 | 7    | 5.0020          | 0.0         | 9.9612   |
| 5.3734        | 0.0428 | 8    | 4.8134          | 0.2256      | 11.2348  |
| 5.276         | 0.0481 | 9    | 4.6671          | 0.3008      | 14.1031  |
| 5.1939        | 0.0535 | 10   | 4.5397          | 0.6767      | 18.7252  |
| 5.1236        | 0.0588 | 11   | 4.4828          | 1.5789      | 24.3832  |
| 4.9665        | 0.0641 | 12   | 4.4752          | 2.8571      | 30.7203  |
| 4.9217        | 0.0695 | 13   | 4.4690          | 3.8346      | 35.5977  |
| 4.7769        | 0.0748 | 14   | 4.4478          | 4.6617      | 40.6799  |
| 4.7217        | 0.0802 | 15   | 4.4240          | 6.5414      | 45.6464  |
| 4.6351        | 0.0855 | 16   | 4.4011          | 7.7444      | 48.5045  |
| 4.6804        | 0.0909 | 17   | 4.3807          | 8.5714      | 50.6061  |
| 4.5868        | 0.0962 | 18   | 4.3575          | 9.9248      | 51.9678  |
| 4.6173        | 0.1016 | 19   | 4.3315          | 11.4286     | 53.0364  |
| 4.5892        | 0.1069 | 20   | 4.3008          | 12.9323     | 54.0593  |
| 4.5701        | 0.1123 | 21   | 4.2633          | 14.5113     | 54.4900  |
| 4.6351        | 0.1176 | 22   | 4.2220          | 16.8421     | 55.2744  |
| 4.429         | 0.1230 | 23   | 4.1739          | 17.7444     | 55.4881  |
| 4.4307        | 0.1283 | 24   | 4.1211          | 18.7970     | 55.8574  |
| 4.329         | 0.1336 | 25   | 4.0618          | 19.4737     | 55.9693  |
| 4.3469        | 0.1390 | 26   | 3.9998          | 20.8271     | 56.2430  |
| 4.2975        | 0.1443 | 27   | 3.9353          | 21.9549     | 56.6353  |
| 4.3071        | 0.1497 | 28   | 3.8643          | 23.6842     | 57.2411  |
| 4.1047        | 0.1550 | 29   | 3.7867          | 24.2857     | 57.1472  |
| 4.1373        | 0.1604 | 30   | 3.7061          | 25.2632     | 57.1898  |
| 4.1239        | 0.1657 | 31   | 3.6258          | 26.4662     | 57.5706  |
| 3.959         | 0.1711 | 32   | 3.5479          | 27.5188     | 57.7931  |
| 3.7877        | 0.1764 | 33   | 3.4758          | 28.0451     | 57.7765  |
| 3.8374        | 0.1818 | 34   | 3.4128          | 29.0226     | 58.1740  |
| 3.8019        | 0.1871 | 35   | 3.3584          | 30.1504     | 58.6550  |
| 3.7692        | 0.1924 | 36   | 3.3101          | 30.8271     | 58.9151  |
| 3.6371        | 0.1978 | 37   | 3.2669          | 32.0301     | 59.2735  |
| 3.8148        | 0.2031 | 38   | 3.2291          | 32.1805     | 59.2572  |
| 3.7487        | 0.2085 | 39   | 3.1963          | 32.5564     | 59.2920  |
| 3.6244        | 0.2138 | 40   | 3.1672          | 32.1053     | 59.4804  |
| 3.6659        | 0.2192 | 41   | 3.1432          | 31.2030     | 59.2762  |
| 3.4609        | 0.2245 | 42   | 3.1235          | 30.0752     | 59.1610  |
| 3.5882        | 0.2299 | 43   | 3.1077          | 29.5489     | 58.9967  |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3