Improve model card: Add library_name, code link, and usage example (#1)
Browse files- Improve model card: Add library_name, code link, and usage example (6ac229bc16a091103a502f680034b9ae87efbbba)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,19 +1,48 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
datasets:
|
4 |
- MegaScience/MegaScience
|
5 |
language:
|
6 |
- en
|
|
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
-
base_model:
|
10 |
-
- Qwen/Qwen2.5-3B
|
11 |
pipeline_tag: text-generation
|
|
|
12 |
---
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
## Qwen2.5-3B-MegaScience
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
### Training Recipe
|
18 |
|
19 |
- **LR**: 5e-6
|
@@ -51,4 +80,4 @@ Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you
|
|
51 |
journal={arXiv preprint arXiv:2507.16812},
|
52 |
url={https://arxiv.org/abs/2507.16812}
|
53 |
}
|
54 |
-
```
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen2.5-3B
|
4 |
datasets:
|
5 |
- MegaScience/MegaScience
|
6 |
language:
|
7 |
- en
|
8 |
+
license: apache-2.0
|
9 |
metrics:
|
10 |
- accuracy
|
|
|
|
|
11 |
pipeline_tag: text-generation
|
12 |
+
library_name: transformers
|
13 |
---
|
14 |
+
|
15 |
+
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://huggingface.co/papers/2507.16812)
|
16 |
+
|
17 |
+
This repository contains the `Qwen2.5-3B-MegaScience` model, one of the models trained as part of the MegaScience project.
|
18 |
+
|
19 |
+
For the official code, data processing pipeline, and evaluation system, please refer to the [MegaScience GitHub repository](https://github.com/GAIR-NLP/lm-open-science-evaluation).
|
20 |
|
21 |
## Qwen2.5-3B-MegaScience
|
22 |
|
23 |
+
### Usage
|
24 |
+
|
25 |
+
You can use this model with the Hugging Face `transformers` library:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
+
|
30 |
+
model_name = "MegaScience/Qwen2.5-3B-MegaScience"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
33 |
+
|
34 |
+
# Example text generation
|
35 |
+
prompt = "The capital of France is"
|
36 |
+
messages = [
|
37 |
+
{"role": "user", "content": prompt}
|
38 |
+
]
|
39 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
40 |
+
model_inputs = tokenizer([text], return_tensors="pt")
|
41 |
+
|
42 |
+
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=20)
|
43 |
+
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
44 |
+
```
|
45 |
+
|
46 |
### Training Recipe
|
47 |
|
48 |
- **LR**: 5e-6
|
|
|
80 |
journal={arXiv preprint arXiv:2507.16812},
|
81 |
url={https://arxiv.org/abs/2507.16812}
|
82 |
}
|
83 |
+
```
|