MehdiHosseiniMoghadam
commited on
Commit
·
6c37025
1
Parent(s):
0337e0e
Create README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
|
2 |
-
language: sv
|
3 |
datasets:
|
4 |
-
- common_voice
|
|
|
|
|
5 |
tags:
|
6 |
- audio
|
7 |
- automatic-speech-recognition
|
@@ -9,24 +10,23 @@ tags:
|
|
9 |
- xlsr-fine-tuning-week
|
10 |
license: apache-2.0
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
results:
|
14 |
- task:
|
15 |
name: Speech Recognition
|
16 |
type: automatic-speech-recognition
|
17 |
dataset:
|
18 |
-
name: Common Voice sv-SE
|
19 |
type: common_voice
|
20 |
-
args: sv-SE
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
-
value:
|
25 |
---
|
26 |
|
27 |
-
# Wav2Vec2-Large-XLSR-53-Hungarian
|
28 |
|
29 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
|
32 |
## Usage
|
@@ -39,10 +39,10 @@ import torchaudio
|
|
39 |
from datasets import load_dataset
|
40 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
|
42 |
-
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]")
|
43 |
|
44 |
-
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
|
45 |
-
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
|
46 |
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
|
@@ -68,7 +68,7 @@ print("Reference:", test_dataset["sentence"][:2])
|
|
68 |
|
69 |
## Evaluation
|
70 |
|
71 |
-
The model can be evaluated as follows on the Swedish test data of Common Voice.
|
72 |
|
73 |
|
74 |
```python
|
@@ -78,14 +78,14 @@ from datasets import load_dataset, load_metric
|
|
78 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
79 |
import re
|
80 |
|
81 |
-
test_dataset = load_dataset("common_voice", "sv-SE", split="test")
|
82 |
wer = load_metric("wer")
|
83 |
|
84 |
-
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
|
85 |
-
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
|
86 |
model.to("cuda")
|
87 |
|
88 |
-
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
89 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
90 |
|
91 |
# Preprocessing the datasets.
|
@@ -105,8 +105,8 @@ def evaluate(batch):
|
|
105 |
|
106 |
with torch.no_grad():
|
107 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
108 |
-
|
109 |
-
|
110 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
111 |
return batch
|
112 |
|
@@ -115,10 +115,10 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
115 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
116 |
```
|
117 |
|
118 |
-
**Test Result**:
|
119 |
|
120 |
|
121 |
## Training
|
122 |
|
123 |
-
The Common Voice `train
|
124 |
-
|
|
|
1 |
+
language: {sv-SE}
|
|
|
2 |
datasets:
|
3 |
+
- common_voice
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
tags:
|
7 |
- audio
|
8 |
- automatic-speech-recognition
|
|
|
10 |
- xlsr-fine-tuning-week
|
11 |
license: apache-2.0
|
12 |
model-index:
|
13 |
+
- name: {MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish}
|
14 |
results:
|
15 |
- task:
|
16 |
name: Speech Recognition
|
17 |
type: automatic-speech-recognition
|
18 |
dataset:
|
19 |
+
name: Common Voice {sv-SE}
|
20 |
type: common_voice
|
21 |
+
args: {sv-SE}
|
22 |
metrics:
|
23 |
- name: Test WER
|
24 |
type: wer
|
25 |
+
value: {41.388337}
|
26 |
---
|
27 |
|
|
|
28 |
|
29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on {Swedish} using the [Common Voice](https://huggingface.co/datasets/common_voice)
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
|
32 |
## Usage
|
|
|
39 |
from datasets import load_dataset
|
40 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
|
42 |
+
test_dataset = load_dataset("common_voice", "{sv-SE}", split="test[:2%]")
|
43 |
|
44 |
+
processor = Wav2Vec2Processor.from_pretrained("{MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish}")
|
45 |
+
model = Wav2Vec2ForCTC.from_pretrained("{MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish}")
|
46 |
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
|
|
|
68 |
|
69 |
## Evaluation
|
70 |
|
71 |
+
The model can be evaluated as follows on the {Swedish} test data of Common Voice.
|
72 |
|
73 |
|
74 |
```python
|
|
|
78 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
79 |
import re
|
80 |
|
81 |
+
test_dataset = load_dataset("common_voice", "{sv-SE}", split="test")
|
82 |
wer = load_metric("wer")
|
83 |
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained("{MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish}")
|
85 |
+
model = Wav2Vec2ForCTC.from_pretrained("{MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish}")
|
86 |
model.to("cuda")
|
87 |
|
88 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
89 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
90 |
|
91 |
# Preprocessing the datasets.
|
|
|
105 |
|
106 |
with torch.no_grad():
|
107 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
108 |
+
|
109 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
110 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
111 |
return batch
|
112 |
|
|
|
115 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
116 |
```
|
117 |
|
118 |
+
**Test Result**: 41.388337 %
|
119 |
|
120 |
|
121 |
## Training
|
122 |
|
123 |
+
The Common Voice `train`, `validation`
|
124 |
+
|