File size: 2,067 Bytes
913f112
 
 
 
 
 
 
 
 
 
 
 
 
dda36fd
913f112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    
    ##### RUN SCRIPT #######

import pandas as pd
from sklearn.impute import SimpleImputer
import numpy as np
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder,LabelEncoder,StandardScaler,PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from joblib import dump
import os

data = pd.read_csv("Salary Prediction of Data Professions.csv")

X = data.iloc[:, data.columns != data.columns[7]].values
X = X[:, [i for i in range(X.shape[1]) if i not in [0, 1, 3]]]
Y = data.iloc[:, 7].values
print("initial array",X[0])

imputer = SimpleImputer(missing_values=np.nan,strategy='mean')
imputer.fit(X[:, [3, 5, 6, 7]])
X[:, [3, 5, 6, 7]] = imputer.transform(X[:, [3, 5, 6, 7]])
print("after managing missing values",X[0])

X[:, 1] = pd.to_datetime(X[:, 1], format='%d-%m-%Y').astype('int64') // 10**9
print("after modifying date to timestamp",X[0])


ct = ColumnTransformer(transformers=[('encode',OneHotEncoder(),[0])],remainder='passthrough')
X = ct.fit_transform(X)
X = np.array(X)
print("encoding the sex M and F",X[0])


label_encoder_2 = LabelEncoder()
label_encoder_4 = LabelEncoder()
X[:, 3] = label_encoder_2.fit_transform(X[:, 3])
X[:, 5] = label_encoder_4.fit_transform(X[:, 5])
print("encoding position and departement",X[0])

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)


scaler = StandardScaler()
Y_train = scaler.fit_transform(Y_train.reshape(-1, 1)).ravel()
Y_test = scaler.transform(Y_test.reshape(-1, 1)).ravel()
print("Y train",Y_train[0])

polynomial = LinearRegression()
poly_reg = PolynomialFeatures(degree=2)
X_train_poly = poly_reg.fit_transform(X_train)
X_test_poly = poly_reg.fit_transform(X_test)

polynomial_model = polynomial.fit(X_train_poly,Y_train)

poly_train_accuracy = polynomial_model.score(X_train_poly,Y_train)
poly_test_accuracy = polynomial_model.score(X_test_poly,Y_test)


print('poly_train_accuracy',poly_train_accuracy)
print('poly_test_accuracy',poly_test_accuracy)