--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer - Pytorch - Falcon base_model: tiiuae/falcon-7b model-index: - name: saqr-7b-instruct results: [] datasets: - HuggingFaceH4/ultrachat_200k - openbmb/UltraFeedback - gsm8k language: - en pipeline_tag: text-generation --- <img src="https://huggingface.co/Menouar/saqr-7b-instruct/resolve/main/saqr.jpg" alt="Saqr Logo" width="800" style="margin-left:auto; margin-right:auto; display:block;"/> # saqr-7b-instruct This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k), [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback), and [gsm8k](https://huggingface.co/datasets/gsm8k) datasets. ## Model description This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta. ## Training and evaluation data The evaluation for training can be found [here](https://huggingface.co/Menouar/saqr-7b-instruct/tensorboard). The evaluation can be found at the Hugging Face Leaderboard [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/saqr-7b-instruct/). ## Training procedure Can be found [here](https://colab.research.google.com/github/menouarazib/llm/blob/main/Saqr_7B.ipynb). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 7 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1