Fixes the python example...
Browse filesI missed the onnx model loading, silly me
README.md
CHANGED
@@ -33,13 +33,18 @@ import onnxruntime
|
|
33 |
import numpy as np
|
34 |
from PIL import Image
|
35 |
|
|
|
|
|
36 |
img = Image.open(sys.argv[1] if len(sys.argv) > 1 else "image.jpg")
|
37 |
img = img.resize((512, 512))
|
38 |
img = np.array(img).astype(np.float32) / 127.5 - 1
|
39 |
|
|
|
40 |
input_name = model.get_inputs()[0].name
|
41 |
output_name = model.get_outputs()[0].name
|
42 |
result = model.run([output_name], {input_name: img})
|
|
|
|
|
43 |
result = np.array(result[0])
|
44 |
# argmax the classes, remove the batch size
|
45 |
result = result.argmax(axis=3).squeeze(0)
|
|
|
33 |
import numpy as np
|
34 |
from PIL import Image
|
35 |
|
36 |
+
model = onnxruntime.InferenceSession("deeplabv3p-resnet50-human.onnx")
|
37 |
+
|
38 |
img = Image.open(sys.argv[1] if len(sys.argv) > 1 else "image.jpg")
|
39 |
img = img.resize((512, 512))
|
40 |
img = np.array(img).astype(np.float32) / 127.5 - 1
|
41 |
|
42 |
+
# infer
|
43 |
input_name = model.get_inputs()[0].name
|
44 |
output_name = model.get_outputs()[0].name
|
45 |
result = model.run([output_name], {input_name: img})
|
46 |
+
|
47 |
+
# squeeze, argmax...
|
48 |
result = np.array(result[0])
|
49 |
# argmax the classes, remove the batch size
|
50 |
result = result.argmax(axis=3).squeeze(0)
|