Markgazol commited on
Commit
97e4819
·
verified ·
1 Parent(s): 8c0e93b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -166
README.md CHANGED
@@ -1,202 +1,149 @@
1
  ---
2
- base_model: Qwen/Qwen2.5-VL-3B-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  library_name: peft
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
 
18
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.11.1
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ datasets:
4
+ - openbmb/VisRAG-Ret-Train-Synthetic-data
5
+ - openbmb/VisRAG-Ret-Train-In-domain-data
6
+ - Metric-AI/rag_docmatix_100k
7
+ - vidore/colpali_train_set
8
+ - llamaindex/vdr-multilingual-train
9
+ - Metric-AI/tabfquad_train_set
10
+ language:
11
+ - en
12
+ - fr
13
+ - es
14
+ - it
15
+ - de
16
+ base_model:
17
+ - Qwen/Qwen2.5-VL-3B-Instruct
18
+ tags:
19
+ - vidore
20
+ - multimodal_embedding
21
+ - multilingual_embedding
22
+ - Text-to-Visual Document (T→VD) retrieval
23
  library_name: peft
24
+ pipeline_tag: visual-document-retrieval
25
  ---
26
+ # ColQwen2.5-3b-multilingual: Multilingual Visual Retriever based on Qwen2.5-VL-3B-Instruct with ColBERT strategy
27
 
28
+ ## Ranked #1 among models smaller than 7B parameters and #2 overall on the Vidore benchmark (as of February 11, 2025). The reported scores on the [Vidore Leaderboard](https://huggingface.co/spaces/vidore/vidore-leaderboard) correspond to checkpoint-1800.
29
 
30
+ ### This is the base version trained on 4xA100 80GB with per_device_batch_size=128 and gradient_accumulation_steps=2 for 5 epoch.
31
 
32
+ ColQwen is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
33
+ It is a [Qwen2.5-VL-3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
34
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
35
 
36
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
37
 
38
+ ## Version specificity
39
 
 
40
 
41
+ This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali.
42
+ Maximal resolution is set so that 768 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements.
43
 
44
+ This version is trained with `colpali-engine==0.3.7`.
45
 
46
+ ## Data
47
+ - **Synthetic data**: Selected and preprocessed from the `openbmb/VisRAG-Ret-Train-Synthetic-data` dataset.
48
+ - **In-domain VQA dataset**: Drawn from `openbmb/VisRAG-Ret-Train-In-domain-data`.
49
+ - **Docmatix dataset**: Extracted from the `Metric-AI/rag_docmatix_100k` dataset.
50
+ - **Colpali dataset**: Taken from `vidore/colpali_train_set`.
51
+ - **Multilingual dataset**: Taken from `llamaindex/vdr-multilingual-train`.
52
 
 
 
 
 
 
 
 
53
 
54
+ ## Model Training
55
 
56
+ ### Parameters
57
+ We train models use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
58
+ with `alpha=128` and `r=128` on the transformer layers from the language model,
59
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
60
+ We train on an 4xA100 GPU setup with distributed data parallelism (via accelerate), a learning rate of 2e-4 with linear decay with 1% warmup steps, batch size per device is 128, gradient accumulation steps are 2, in `bfloat16` format
61
 
62
+ ## Installation
 
 
63
 
64
+ Make sure `colpali-engine` is installed from source or with a version superior to 0.3.1.
65
+ `transformers` version must be > 4.45.0.
66
 
67
+ ### ColPali
68
+ ```bash
69
+ pip install git+https://github.com/illuin-tech/colpali
70
+ ```
71
+ or
72
+ ```bash
73
+ pip install git+https://github.com/illuin-tech/colpali@colqwen2_5
74
+ ```
75
 
76
+ ### Qwen2.5
77
+ The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
78
+ ```
79
+ pip install git+https://github.com/huggingface/transformers accelerate
80
+ ```
81
+ or you might encounter the following error:
82
+ ```
83
+ KeyError: 'qwen2_5_vl'
84
+ ```
85
 
86
+ ## Usage
87
 
88
+ ```python
89
+ import torch
90
+ from PIL import Image
91
 
92
+ from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor
93
 
94
+ model = ColQwen2_5.from_pretrained(
95
+ "Metric-AI/colqwen2.5-3b-multilingual",
96
+ torch_dtype=torch.bfloat16,
97
+ device_map="cuda:0", # or "mps" if on Apple Silicon
98
+ ).eval()
99
+ processor = ColQwen2_5_Processor.from_pretrained("Metric-AI/colqwen2.5-3b-multilingual")
100
 
101
+ # Your inputs
102
+ images = [
103
+ Image.new("RGB", (32, 32), color="white"),
104
+ Image.new("RGB", (16, 16), color="black"),
105
+ ]
106
+ queries = [
107
+ "Is attention really all you need?",
108
+ "What is the amount of bananas farmed in Salvador?",
109
+ ]
110
 
111
+ # Process the inputs
112
+ batch_images = processor.process_images(images).to(model.device)
113
+ batch_queries = processor.process_queries(queries).to(model.device)
114
 
115
+ # Forward pass
116
+ with torch.no_grad():
117
+ image_embeddings = model(**batch_images)
118
+ query_embeddings = model(**batch_queries)
119
 
120
+ scores = processor.score_multi_vector(query_embeddings, image_embeddings)
121
+ ```
122
 
 
123
 
124
+ ## Limitations
125
 
126
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
127
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
128
 
129
+ ## License
130
 
131
+ ColQwen2.5's vision language backbone model (Qwen2.5-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license.
132
 
 
133
 
134
+ ## Citation
135
 
136
+ If you use this models from this organization in your research, please cite the original paper as follows:
137
 
138
+ ```bibtex
139
+ @misc{faysse2024colpaliefficientdocumentretrieval,
140
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
141
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
142
+ year={2024},
143
+ eprint={2407.01449},
144
+ archivePrefix={arXiv},
145
+ primaryClass={cs.IR},
146
+ url={https://arxiv.org/abs/2407.01449},
147
+ }
148
+ ```
149
+ - **Developed by:** [Metric AI Research Lab](https://metric.am/)