nothuggingfaceatall commited on
Commit
c4ebf03
·
verified ·
1 Parent(s): c0f290e

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ datasets:
4
+ - openbmb/VisRAG-Ret-Train-Synthetic-data
5
+ - openbmb/VisRAG-Ret-Train-In-domain-data
6
+ - Metric-AI/rag_docmatix_100k
7
+ - vidore/colpali_train_set
8
+ - llamaindex/vdr-multilingual-train
9
+ language:
10
+ - en
11
+ - fr
12
+ - es
13
+ - it
14
+ - de
15
+ base_model:
16
+ - Qwen/Qwen2.5-VL-3B-Instruct
17
+ tags:
18
+ - vidore
19
+ - multimodal_embedding
20
+ - multilingual_embedding
21
+ - Text-to-Visual Document (T→VD) retrieval
22
+ library_name: peft
23
+ ---
24
+ # ColQwen2.5-3b-multilingual: Multilingual Visual Retriever based on Qwen2.5-VL-3B-Instruct with ColBERT strategy
25
+
26
+ ### This is the base version trained on 4xA100 80GB with per_device_batch_size=128 and gradient_accumulation_steps=2 for 5 epoch.
27
+
28
+ ColQwen is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
29
+ It is a [Qwen2.5-VL-3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
30
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
31
+
32
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
33
+
34
+ ## Version specificity
35
+
36
+
37
+ This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali.
38
+ Maximal resolution is set so that 768 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements.
39
+
40
+ This version is trained with `colpali-engine==0.3.7`.
41
+
42
+ ## Data
43
+ - **Synthetic data**: Selected and preprocessed from the `openbmb/VisRAG-Ret-Train-Synthetic-data` dataset.
44
+ - **In-domain VQA dataset**: Drawn from `openbmb/VisRAG-Ret-Train-In-domain-data`.
45
+ - **Docmatix dataset**: Extracted from the `Metric-AI/rag_docmatix_100k` dataset.
46
+ - **Colpali dataset**: Taken from `vidore/colpali_train_set`.
47
+ - **Multilingual dataset**: Taken from `llamaindex/vdr-multilingual-train`.
48
+
49
+
50
+ ## Model Training
51
+
52
+ ### Parameters
53
+ We train models use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
54
+ with `alpha=128` and `r=128` on the transformer layers from the language model,
55
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
56
+ We train on an 4xA100 GPU setup with distributed data parallelism (via accelerate), a learning rate of 2e-4 with linear decay with 1% warmup steps, batch size per device is 128, gradient accumulation steps are 2, in `bfloat16` format
57
+
58
+ ## Usage
59
+
60
+ Make sure `colpali-engine` is installed from source or with a version superior to 0.3.1.
61
+ `transformers` version must be > 4.45.0.
62
+
63
+ ```bash
64
+ pip install git+https://github.com/illuin-tech/colpali
65
+ ```
66
+
67
+ ```python
68
+ import torch
69
+ from PIL import Image
70
+
71
+ from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor
72
+
73
+ model = ColQwen2_5.from_pretrained(
74
+ "Metric-AI/colqwen2.5-3b-multilingual",
75
+ torch_dtype=torch.bfloat16,
76
+ device_map="cuda:0", # or "mps" if on Apple Silicon
77
+ ).eval()
78
+ processor = ColQwen2_5_Processor.from_pretrained("Metric-AI/colqwen2.5-3b-multilingual")
79
+
80
+ # Your inputs
81
+ images = [
82
+ Image.new("RGB", (32, 32), color="white"),
83
+ Image.new("RGB", (16, 16), color="black"),
84
+ ]
85
+ queries = [
86
+ "Is attention really all you need?",
87
+ "What is the amount of bananas farmed in Salvador?",
88
+ ]
89
+
90
+ # Process the inputs
91
+ batch_images = processor.process_images(images).to(model.device)
92
+ batch_queries = processor.process_queries(queries).to(model.device)
93
+
94
+ # Forward pass
95
+ with torch.no_grad():
96
+ image_embeddings = model(**batch_images)
97
+ query_embeddings = model(**batch_queries)
98
+
99
+ scores = processor.score_multi_vector(query_embeddings, image_embeddings)
100
+ ```
101
+
102
+
103
+ ## Limitations
104
+
105
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
106
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
107
+
108
+ ## License
109
+
110
+ ColQwen2.5's vision language backbone model (Qwen2.5-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license.
111
+
112
+
113
+ ## Citation
114
+
115
+ If you use this models from this organization in your research, please cite the original paper as follows:
116
+
117
+ ```bibtex
118
+ @misc{faysse2024colpaliefficientdocumentretrieval,
119
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
120
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
121
+ year={2024},
122
+ eprint={2407.01449},
123
+ archivePrefix={arXiv},
124
+ primaryClass={cs.IR},
125
+ url={https://arxiv.org/abs/2407.01449},
126
+ }
127
+ ```
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": "gaussian",
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 128,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
26
+ "task_type": "FEATURE_EXTRACTION",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2571d83e0aefef4fc18a8d8b5d35e9c1812dfa3ed8d8c0b00c221ae3580606c1
3
+ size 959057112
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-1800/.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1800/README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ datasets:
4
+ - openbmb/VisRAG-Ret-Train-Synthetic-data
5
+ - openbmb/VisRAG-Ret-Train-In-domain-data
6
+ - Metric-AI/rag_docmatix_100k
7
+ - vidore/colpali_train_set
8
+ - llamaindex/vdr-multilingual-train
9
+ language:
10
+ - en
11
+ - fr
12
+ - es
13
+ - it
14
+ - de
15
+ base_model:
16
+ - Qwen/Qwen2.5-VL-3B-Instruct
17
+ tags:
18
+ - vidore
19
+ - multimodal_embedding
20
+ - multilingual_embedding
21
+ - Text-to-Visual Document (T→VD) retrieval
22
+ library_name: peft
23
+ ---
24
+ # ColQwen2.5-3b-multilingual: Multilingual Visual Retriever based on Qwen2.5-VL-3B-Instruct with ColBERT strategy
25
+
26
+ ### This is the base version trained on 4xA100 80GB with per_device_batch_size=128 and gradient_accumulation_steps=2 for 5 epoch.
27
+
28
+ ColQwen is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
29
+ It is a [Qwen2.5-VL-3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
30
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
31
+
32
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
33
+
34
+ ## Version specificity
35
+
36
+
37
+ This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali.
38
+ Maximal resolution is set so that 768 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements.
39
+
40
+ This version is trained with `colpali-engine==0.3.7`.
41
+
42
+ ## Data
43
+ - **Synthetic data**: Selected and preprocessed from the `openbmb/VisRAG-Ret-Train-Synthetic-data` dataset.
44
+ - **In-domain VQA dataset**: Drawn from `openbmb/VisRAG-Ret-Train-In-domain-data`.
45
+ - **Docmatix dataset**: Extracted from the `Metric-AI/rag_docmatix_100k` dataset.
46
+ - **Colpali dataset**: Taken from `vidore/colpali_train_set`.
47
+ - **Multilingual dataset**: Taken from `llamaindex/vdr-multilingual-train`.
48
+
49
+
50
+ ## Model Training
51
+
52
+ ### Parameters
53
+ We train models use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
54
+ with `alpha=128` and `r=128` on the transformer layers from the language model,
55
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
56
+ We train on an 4xA100 GPU setup with distributed data parallelism (via accelerate), a learning rate of 2e-4 with linear decay with 1% warmup steps, batch size per device is 128, gradient accumulation steps are 2, in `bfloat16` format
57
+
58
+ ## Usage
59
+
60
+ Make sure `colpali-engine` is installed from source or with a version superior to 0.3.1.
61
+ `transformers` version must be > 4.45.0.
62
+
63
+ ```bash
64
+ pip install git+https://github.com/illuin-tech/colpali
65
+ ```
66
+
67
+ ```python
68
+ import torch
69
+ from PIL import Image
70
+
71
+ from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor
72
+
73
+ model = ColQwen2_5.from_pretrained(
74
+ "Metric-AI/colqwen2.5-3b-multilingual",
75
+ torch_dtype=torch.bfloat16,
76
+ device_map="cuda:0", # or "mps" if on Apple Silicon
77
+ ).eval()
78
+ processor = ColQwen2_5_Processor.from_pretrained("Metric-AI/colqwen2.5-3b-multilingual")
79
+
80
+ # Your inputs
81
+ images = [
82
+ Image.new("RGB", (32, 32), color="white"),
83
+ Image.new("RGB", (16, 16), color="black"),
84
+ ]
85
+ queries = [
86
+ "Is attention really all you need?",
87
+ "What is the amount of bananas farmed in Salvador?",
88
+ ]
89
+
90
+ # Process the inputs
91
+ batch_images = processor.process_images(images).to(model.device)
92
+ batch_queries = processor.process_queries(queries).to(model.device)
93
+
94
+ # Forward pass
95
+ with torch.no_grad():
96
+ image_embeddings = model(**batch_images)
97
+ query_embeddings = model(**batch_queries)
98
+
99
+ scores = processor.score_multi_vector(query_embeddings, image_embeddings)
100
+ ```
101
+
102
+
103
+ ## Limitations
104
+
105
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
106
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
107
+
108
+ ## License
109
+
110
+ ColQwen2.5's vision language backbone model (Qwen2.5-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license.
111
+
112
+
113
+ ## Citation
114
+
115
+ If you use this models from this organization in your research, please cite the original paper as follows:
116
+
117
+ ```bibtex
118
+ @misc{faysse2024colpaliefficientdocumentretrieval,
119
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
120
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
121
+ year={2024},
122
+ eprint={2407.01449},
123
+ archivePrefix={arXiv},
124
+ primaryClass={cs.IR},
125
+ url={https://arxiv.org/abs/2407.01449},
126
+ }
127
+ ```
checkpoint-1800/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": "gaussian",
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 128,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
26
+ "task_type": "FEATURE_EXTRACTION",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1800/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f51b1f9f6e343dffcc47e839d0c5957fd9758f1892dc4cacf39ce8c04e2d1bde
3
+ size 959057112
checkpoint-1800/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1800/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-1800/git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 59e94a92790b67bd60507608c3115a2e48f83a07
checkpoint-1800/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1800/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2_5_VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "ColQwen2_5Processor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-1800/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1800/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1800/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "ColQwen2_5Processor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-1800/training_config.yml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/colqwen2_5-3b-mixed-multiL-5ep-l-128
4
+ processor:
5
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
6
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2_5Processor
7
+ pretrained_model_name_or_path: "Qwen/Qwen2.5-VL-3B-Instruct" # "./models/paligemma-3b-mix-448"
8
+ # num_image_tokens: 2048
9
+ # max_length: 50
10
+
11
+ model:
12
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
13
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2_5
14
+ pretrained_model_name_or_path: "Qwen/Qwen2.5-VL-3B-Instruct"
15
+ torch_dtype: !ext torch.bfloat16
16
+ use_cache: false
17
+ attn_implementation: "flash_attention_2"
18
+ # device_map: "auto"
19
+ # quantization_config:
20
+ # (): transformers.BitsAndBytesConfig
21
+ # load_in_4bit: true
22
+ # bnb_4bit_quant_type: "nf4"
23
+ # bnb_4bit_compute_dtype: "bfloat16"
24
+ # bnb_4bit_use_double_quant: true
25
+
26
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_mixed_multiL_train_set
27
+ eval_dataset_loader: !import ../data/test_data.yaml
28
+
29
+ # max_length: 50
30
+ run_eval: true
31
+ loss_func:
32
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
33
+ tr_args:
34
+ (): transformers.training_args.TrainingArguments
35
+ output_dir: null
36
+ overwrite_output_dir: true
37
+ num_train_epochs: 1
38
+ per_device_train_batch_size: 128
39
+ gradient_checkpointing: true
40
+ gradient_checkpointing_kwargs: { "use_reentrant": false }
41
+ # gradient_checkpointing: true
42
+ # 6 x 8 gpus = 48 batch size
43
+ gradient_accumulation_steps: 2
44
+ per_device_eval_batch_size: 32
45
+ eval_strategy: "steps"
46
+ dataloader_num_workers: 8
47
+ # bf16: true
48
+ save_steps: 100
49
+ logging_steps: 1
50
+ eval_steps: 180
51
+ warmup_steps: 19
52
+ learning_rate: 2e-4
53
+ save_total_limit: 15
54
+ resume_from_checkpoint: false
55
+ optim: "paged_adamw_8bit"
56
+ # wandb logging
57
+ # wandb_project: "dolma"
58
+ run_name: "colqwen2_5-3b-mixed-multiL-5ep-l-128"
59
+ report_to: wandb
60
+
61
+
62
+ peft_config:
63
+ (): peft.LoraConfig
64
+ r: 128
65
+ lora_alpha: 128
66
+ lora_dropout: 0.1
67
+ init_lora_weights: "gaussian"
68
+ bias: "none"
69
+ task_type: "FEATURE_EXTRACTION"
70
+ target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
71
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
72
+
checkpoint-1800/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 59e94a92790b67bd60507608c3115a2e48f83a07
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2_5_VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "ColQwen2_5Processor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"arxivqa_test_subsampled": {"ndcg_at_1": 0.86, "ndcg_at_3": 0.89602, "ndcg_at_5": 0.90738, "ndcg_at_10": 0.91247, "ndcg_at_20": 0.91649, "ndcg_at_100": 0.91954, "ndcg_at_1000": 0.9201, "map_at_1": 0.86, "map_at_3": 0.88767, "map_at_5": 0.89387, "map_at_10": 0.89592, "map_at_20": 0.89701, "map_at_100": 0.89746, "map_at_1000": 0.89748, "recall_at_1": 0.86, "recall_at_3": 0.92, "recall_at_5": 0.948, "recall_at_10": 0.964, "recall_at_20": 0.98, "recall_at_100": 0.996, "recall_at_1000": 1.0, "precision_at_1": 0.86, "precision_at_3": 0.30667, "precision_at_5": 0.1896, "precision_at_10": 0.0964, "precision_at_20": 0.049, "precision_at_100": 0.00996, "precision_at_1000": 0.001, "mrr_at_1": 0.86, "mrr_at_3": 0.8889999999999999, "mrr_at_5": 0.8934999999999997, "mrr_at_10": 0.8961936507936505, "mrr_at_20": 0.8972816403754481, "mrr_at_100": 0.8977296741827361, "mrr_at_1000": 0.8977586086890899, "naucs_at_1_max": 0.722793404461687, "naucs_at_1_std": -0.038146044062629184, "naucs_at_1_diff1": 0.9546556741028124, "naucs_at_3_max": 0.7859710550887037, "naucs_at_3_std": 0.01360877684407265, "naucs_at_3_diff1": 0.9129901960784345, "naucs_at_5_max": 0.8335667600373489, "naucs_at_5_std": 0.04666738490267592, "naucs_at_5_diff1": 0.9340120663650082, "naucs_at_10_max": 0.8512553169415892, "naucs_at_10_std": 0.07505965349101841, "naucs_at_10_diff1": 0.9192084241103815, "naucs_at_20_max": 0.9738562091503187, "naucs_at_20_std": 0.3808590102707724, "naucs_at_20_diff1": 0.9084967320261399, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 0.8692810457516423, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "docvqa_test_subsampled": {"ndcg_at_1": 0.55654, "ndcg_at_3": 0.63486, "ndcg_at_5": 0.65355, "ndcg_at_10": 0.66767, "ndcg_at_20": 0.68004, "ndcg_at_100": 0.69372, "ndcg_at_1000": 0.70593, "map_at_1": 0.55654, "map_at_3": 0.61456, "map_at_5": 0.62465, "map_at_10": 0.63035, "map_at_20": 0.63377, "map_at_100": 0.63572, "map_at_1000": 0.63622, "recall_at_1": 0.55654, "recall_at_3": 0.69401, "recall_at_5": 0.74058, "recall_at_10": 0.78492, "recall_at_20": 0.8337, "recall_at_100": 0.90687, "recall_at_1000": 1.0, "precision_at_1": 0.55654, "precision_at_3": 0.23134, "precision_at_5": 0.14812, "precision_at_10": 0.07849, "precision_at_20": 0.04169, "precision_at_100": 0.00907, "precision_at_1000": 0.001, "mrr_at_1": 0.5565410199556541, "mrr_at_3": 0.6127124907612713, "mrr_at_5": 0.6236881005173688, "mrr_at_10": 0.6300408263822898, "mrr_at_20": 0.6333156432311732, "mrr_at_100": 0.6353411227279873, "mrr_at_1000": 0.6358054759704315, "naucs_at_1_max": 0.5257722632439136, "naucs_at_1_std": 0.10050303275375208, "naucs_at_1_diff1": 0.8849570154601619, "naucs_at_3_max": 0.4612022712381768, "naucs_at_3_std": 0.15996734473763619, "naucs_at_3_diff1": 0.7968064775356001, "naucs_at_5_max": 0.4464095203043038, "naucs_at_5_std": 0.32716928956958097, "naucs_at_5_diff1": 0.7844569699129116, "naucs_at_10_max": 0.37102681160936635, "naucs_at_10_std": 0.44024504471037584, "naucs_at_10_diff1": 0.7856507094113239, "naucs_at_20_max": 0.3234215889454963, "naucs_at_20_std": 0.4899776595937942, "naucs_at_20_diff1": 0.7677297231158269, "naucs_at_100_max": 0.15381107905278507, "naucs_at_100_std": 0.8716361071120375, "naucs_at_100_diff1": 0.7936512540332907, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "infovqa_test_subsampled": {"ndcg_at_1": 0.89069, "ndcg_at_3": 0.92332, "ndcg_at_5": 0.92933, "ndcg_at_10": 0.93387, "ndcg_at_20": 0.93494, "ndcg_at_100": 0.93797, "ndcg_at_1000": 0.93875, "map_at_1": 0.89069, "map_at_3": 0.91565, "map_at_5": 0.9191, "map_at_10": 0.92094, "map_at_20": 0.92126, "map_at_100": 0.92169, "map_at_1000": 0.92171, "recall_at_1": 0.89069, "recall_at_3": 0.94534, "recall_at_5": 0.95951, "recall_at_10": 0.97368, "recall_at_20": 0.97773, "recall_at_100": 0.99393, "recall_at_1000": 1.0, "precision_at_1": 0.89069, "precision_at_3": 0.31511, "precision_at_5": 0.1919, "precision_at_10": 0.09737, "precision_at_20": 0.04889, "precision_at_100": 0.00994, "precision_at_1000": 0.001, "mrr_at_1": 0.8906882591093117, "mrr_at_3": 0.9153171390013495, "mrr_at_5": 0.9191632928475032, "mrr_at_10": 0.9206750851487693, "mrr_at_20": 0.920994064415117, "mrr_at_100": 0.9214189037498206, "mrr_at_1000": 0.9214460799655682, "naucs_at_1_max": 0.6266617765209551, "naucs_at_1_std": -0.19467734849749174, "naucs_at_1_diff1": 0.9490969427703365, "naucs_at_3_max": 0.7646193541044001, "naucs_at_3_std": -0.049253260481305516, "naucs_at_3_diff1": 0.9441833971070621, "naucs_at_5_max": 0.8436958283279918, "naucs_at_5_std": 0.11750221148894235, "naucs_at_5_diff1": 0.9469328268926711, "naucs_at_10_max": 0.8223529961696429, "naucs_at_10_std": 0.1964949763377099, "naucs_at_10_diff1": 0.9284044609167826, "naucs_at_20_max": 0.8964958869122784, "naucs_at_20_std": 0.4419658243478526, "naucs_at_20_diff1": 0.927259949634811, "naucs_at_100_max": 0.9564661819784259, "naucs_at_100_std": 0.39174816052979483, "naucs_at_100_diff1": 0.9564661819784259, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "tabfquad_test_subsampled": {"ndcg_at_1": 0.86071, "ndcg_at_3": 0.89133, "ndcg_at_5": 0.89594, "ndcg_at_10": 0.90153, "ndcg_at_20": 0.90908, "ndcg_at_100": 0.91536, "ndcg_at_1000": 0.91536, "map_at_1": 0.86071, "map_at_3": 0.88452, "map_at_5": 0.8872, "map_at_10": 0.8894, "map_at_20": 0.89164, "map_at_100": 0.89262, "map_at_1000": 0.89262, "recall_at_1": 0.86071, "recall_at_3": 0.91071, "recall_at_5": 0.92143, "recall_at_10": 0.93929, "recall_at_20": 0.96786, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.86071, "precision_at_3": 0.30357, "precision_at_5": 0.18429, "precision_at_10": 0.09393, "precision_at_20": 0.04839, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.8571428571428571, "mrr_at_3": 0.8839285714285714, "mrr_at_5": 0.8864285714285713, "mrr_at_10": 0.8889172335600906, "mrr_at_20": 0.890549232513518, "mrr_at_100": 0.8915407957626755, "mrr_at_1000": 0.8915407957626755, "naucs_at_1_max": 0.565388152825077, "naucs_at_1_std": 0.40889656715304873, "naucs_at_1_diff1": 0.8467772005269835, "naucs_at_3_max": 0.6566573295985063, "naucs_at_3_std": 0.5545284780578894, "naucs_at_3_diff1": 0.8447245564892628, "naucs_at_5_max": 0.6497113997114, "naucs_at_5_std": 0.5355869620575493, "naucs_at_5_diff1": 0.8421186656480768, "naucs_at_10_max": 0.7744548799912124, "naucs_at_10_std": 0.6476080628329782, "naucs_at_10_diff1": 0.8545888943812839, "naucs_at_20_max": 0.8451602863367568, "naucs_at_20_std": 0.7453574022201472, "naucs_at_20_diff1": 0.8306359580869404, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "tatdqa_test": {"ndcg_at_1": 0.68955, "ndcg_at_3": 0.78416, "ndcg_at_5": 0.80618, "ndcg_at_10": 0.81969, "ndcg_at_20": 0.82389, "ndcg_at_100": 0.82898, "ndcg_at_1000": 0.83022, "map_at_1": 0.68955, "map_at_3": 0.76063, "map_at_5": 0.773, "map_at_10": 0.77866, "map_at_20": 0.77984, "map_at_100": 0.7805, "map_at_1000": 0.78056, "recall_at_1": 0.68955, "recall_at_3": 0.85237, "recall_at_5": 0.90522, "recall_at_10": 0.94654, "recall_at_20": 0.96294, "recall_at_100": 0.99089, "recall_at_1000": 1.0, "precision_at_1": 0.68955, "precision_at_3": 0.28412, "precision_at_5": 0.18104, "precision_at_10": 0.09465, "precision_at_20": 0.04815, "precision_at_100": 0.00991, "precision_at_1000": 0.001, "mrr_at_1": 0.6816524908869988, "mrr_at_3": 0.7562778452814904, "mrr_at_5": 0.7686715269339816, "mrr_at_10": 0.7745462786167524, "mrr_at_20": 0.7758200056081633, "mrr_at_100": 0.7764618378499478, "mrr_at_1000": 0.7765242843809894, "naucs_at_1_max": 0.24837787265702854, "naucs_at_1_std": -0.19241555267499547, "naucs_at_1_diff1": 0.8236282079241498, "naucs_at_3_max": 0.24346304749013487, "naucs_at_3_std": -0.18927905384673094, "naucs_at_3_diff1": 0.7202539222925216, "naucs_at_5_max": 0.2964781524481732, "naucs_at_5_std": -0.07115963375478136, "naucs_at_5_diff1": 0.6729800878199006, "naucs_at_10_max": 0.4000649649660007, "naucs_at_10_std": 0.18029921295145243, "naucs_at_10_diff1": 0.6525400665529622, "naucs_at_20_max": 0.4809424079608138, "naucs_at_20_std": 0.28896008671282786, "naucs_at_20_diff1": 0.6872334498348703, "naucs_at_100_max": 0.4792973536271862, "naucs_at_100_std": 0.42059668900329966, "naucs_at_100_diff1": 0.6931508305328492, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "shiftproject_test": {"ndcg_at_1": 0.73, "ndcg_at_3": 0.84202, "ndcg_at_5": 0.85837, "ndcg_at_10": 0.86769, "ndcg_at_20": 0.86769, "ndcg_at_100": 0.86945, "ndcg_at_1000": 0.86945, "map_at_1": 0.73, "map_at_3": 0.815, "map_at_5": 0.824, "map_at_10": 0.82761, "map_at_20": 0.82761, "map_at_100": 0.82781, "map_at_1000": 0.82781, "recall_at_1": 0.73, "recall_at_3": 0.92, "recall_at_5": 0.96, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.73, "precision_at_3": 0.30667, "precision_at_5": 0.192, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.73, "mrr_at_3": 0.82, "mrr_at_5": 0.8320000000000001, "mrr_at_10": 0.8344999999999999, "mrr_at_20": 0.8344999999999999, "mrr_at_100": 0.8346960784313725, "mrr_at_1000": 0.8346960784313725, "naucs_at_1_max": -0.029605457154652116, "naucs_at_1_std": -0.4257209695492341, "naucs_at_1_diff1": 0.8361870687452088, "naucs_at_3_max": 0.3197945845004683, "naucs_at_3_std": -0.3085901027077499, "naucs_at_3_diff1": 0.7829131652661058, "naucs_at_5_max": 0.6050420168067251, "naucs_at_5_std": -0.029178338001862987, "naucs_at_5_diff1": 0.8651960784313721, "naucs_at_10_max": 0.7222222222222276, "naucs_at_10_std": 0.35807656395891135, "naucs_at_10_diff1": 0.8692810457516413, "naucs_at_20_max": 0.7222222222222276, "naucs_at_20_std": 0.35807656395891135, "naucs_at_20_diff1": 0.8692810457516413, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_artificial_intelligence_test": {"ndcg_at_1": 0.99, "ndcg_at_3": 0.99, "ndcg_at_5": 0.99431, "ndcg_at_10": 0.99431, "ndcg_at_20": 0.99431, "ndcg_at_100": 0.99431, "ndcg_at_1000": 0.99431, "map_at_1": 0.99, "map_at_3": 0.99, "map_at_5": 0.9925, "map_at_10": 0.9925, "map_at_20": 0.9925, "map_at_100": 0.9925, "map_at_1000": 0.9925, "recall_at_1": 0.99, "recall_at_3": 0.99, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.99, "precision_at_3": 0.33, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.99, "mrr_at_3": 0.99, "mrr_at_5": 0.9925, "mrr_at_10": 0.9925, "mrr_at_20": 0.9925, "mrr_at_100": 0.9925, "mrr_at_1000": 0.9925, "naucs_at_1_max": 1.0, "naucs_at_1_std": 0.8692810457516276, "naucs_at_1_diff1": 0.8692810457516276, "naucs_at_3_max": 1.0, "naucs_at_3_std": 0.8692810457516356, "naucs_at_3_diff1": 0.8692810457516356, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_energy_test": {"ndcg_at_1": 0.94, "ndcg_at_3": 0.95631, "ndcg_at_5": 0.96448, "ndcg_at_10": 0.96448, "ndcg_at_20": 0.96448, "ndcg_at_100": 0.96645, "ndcg_at_1000": 0.96645, "map_at_1": 0.94, "map_at_3": 0.95167, "map_at_5": 0.95617, "map_at_10": 0.95617, "map_at_20": 0.95617, "map_at_100": 0.95647, "map_at_1000": 0.95647, "recall_at_1": 0.94, "recall_at_3": 0.97, "recall_at_5": 0.99, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.94, "precision_at_3": 0.32333, "precision_at_5": 0.198, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.95, "mrr_at_3": 0.9583333333333335, "mrr_at_5": 0.9628333333333334, "mrr_at_10": 0.9628333333333334, "mrr_at_20": 0.9628333333333334, "mrr_at_100": 0.9631458333333335, "mrr_at_1000": 0.9631458333333335, "naucs_at_1_max": 0.6098661686896992, "naucs_at_1_std": -0.6484593837534979, "naucs_at_1_diff1": 0.9782135076252712, "naucs_at_3_max": 0.7587924058512326, "naucs_at_3_std": -0.7791783380018689, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": -1.1517273576097316, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": -1.1517273576097316, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": -1.1517273576097316, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_government_reports_test": {"ndcg_at_1": 0.92, "ndcg_at_3": 0.96917, "ndcg_at_5": 0.96917, "ndcg_at_10": 0.96917, "ndcg_at_20": 0.96917, "ndcg_at_100": 0.96917, "ndcg_at_1000": 0.96917, "map_at_1": 0.92, "map_at_3": 0.95833, "map_at_5": 0.95833, "map_at_10": 0.95833, "map_at_20": 0.95833, "map_at_100": 0.95833, "map_at_1000": 0.95833, "recall_at_1": 0.92, "recall_at_3": 1.0, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.92, "precision_at_3": 0.33333, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.95, "mrr_at_3": 0.9733333333333333, "mrr_at_5": 0.9733333333333333, "mrr_at_10": 0.9733333333333333, "mrr_at_20": 0.9733333333333333, "mrr_at_100": 0.9733333333333333, "mrr_at_1000": 0.9733333333333333, "naucs_at_1_max": 0.4804505135387461, "naucs_at_1_std": 0.05508870214752533, "naucs_at_1_diff1": 0.8952497665732956, "naucs_at_3_max": 1.0, "naucs_at_3_std": 1.0, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_healthcare_industry_test": {"ndcg_at_1": 0.96, "ndcg_at_3": 0.98393, "ndcg_at_5": 0.98393, "ndcg_at_10": 0.98393, "ndcg_at_20": 0.98393, "ndcg_at_100": 0.98393, "ndcg_at_1000": 0.98393, "map_at_1": 0.96, "map_at_3": 0.97833, "map_at_5": 0.97833, "map_at_10": 0.97833, "map_at_20": 0.97833, "map_at_100": 0.97833, "map_at_1000": 0.97833, "recall_at_1": 0.96, "recall_at_3": 1.0, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.96, "precision_at_3": 0.33333, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.97, "mrr_at_3": 0.9833333333333334, "mrr_at_5": 0.9833333333333334, "mrr_at_10": 0.9833333333333334, "mrr_at_20": 0.9833333333333334, "mrr_at_100": 0.9833333333333334, "mrr_at_1000": 0.9833333333333334, "naucs_at_1_max": 0.74439775910364, "naucs_at_1_std": -0.053688141923436454, "naucs_at_1_diff1": 0.96732026143791, "naucs_at_3_max": 1.0, "naucs_at_3_std": 1.0, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}}
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "ColQwen2_5Processor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
training_config.yml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/colqwen2_5-3b-mixed-multiL-5ep-l-128
4
+ processor:
5
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
6
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2_5Processor
7
+ pretrained_model_name_or_path: "Qwen/Qwen2.5-VL-3B-Instruct" # "./models/paligemma-3b-mix-448"
8
+ # num_image_tokens: 2048
9
+ # max_length: 50
10
+
11
+ model:
12
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
13
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2_5
14
+ pretrained_model_name_or_path: "Qwen/Qwen2.5-VL-3B-Instruct"
15
+ torch_dtype: !ext torch.bfloat16
16
+ use_cache: false
17
+ attn_implementation: "flash_attention_2"
18
+ # device_map: "auto"
19
+ # quantization_config:
20
+ # (): transformers.BitsAndBytesConfig
21
+ # load_in_4bit: true
22
+ # bnb_4bit_quant_type: "nf4"
23
+ # bnb_4bit_compute_dtype: "bfloat16"
24
+ # bnb_4bit_use_double_quant: true
25
+
26
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_mixed_multiL_train_set
27
+ eval_dataset_loader: !import ../data/test_data.yaml
28
+
29
+ # max_length: 50
30
+ run_eval: true
31
+ loss_func:
32
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
33
+ tr_args:
34
+ (): transformers.training_args.TrainingArguments
35
+ output_dir: null
36
+ overwrite_output_dir: true
37
+ num_train_epochs: 1
38
+ per_device_train_batch_size: 128
39
+ gradient_checkpointing: true
40
+ gradient_checkpointing_kwargs: { "use_reentrant": false }
41
+ # gradient_checkpointing: true
42
+ # 6 x 8 gpus = 48 batch size
43
+ gradient_accumulation_steps: 2
44
+ per_device_eval_batch_size: 32
45
+ eval_strategy: "steps"
46
+ dataloader_num_workers: 8
47
+ # bf16: true
48
+ save_steps: 100
49
+ logging_steps: 1
50
+ eval_steps: 180
51
+ warmup_steps: 19
52
+ learning_rate: 2e-4
53
+ save_total_limit: 15
54
+ resume_from_checkpoint: false
55
+ optim: "paged_adamw_8bit"
56
+ # wandb logging
57
+ # wandb_project: "dolma"
58
+ run_name: "colqwen2_5-3b-mixed-multiL-5ep-l-128"
59
+ report_to: wandb
60
+
61
+
62
+ peft_config:
63
+ (): peft.LoraConfig
64
+ r: 128
65
+ lora_alpha: 128
66
+ lora_dropout: 0.1
67
+ init_lora_weights: "gaussian"
68
+ bias: "none"
69
+ task_type: "FEATURE_EXTRACTION"
70
+ target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
71
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
72
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff