import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from pyctcdecode import build_ctcdecoder import gradio as gr import librosa import os from multiprocessing import Pool class KenLM: def __init__(self, tokenizer, model_name, num_workers=8, beam_width=128): self.num_workers = num_workers self.beam_width = beam_width vocab_dict = tokenizer.get_vocab() self.vocabulary = [x[0] for x in sorted(vocab_dict.items(), key=lambda x: x[1], reverse=False)] # Workaround for wrong number of vocabularies: self.vocabulary = self.vocabulary[:-2] self.decoder = build_ctcdecoder(self.vocabulary, model_name) @staticmethod def lm_postprocess(text): return ' '.join([x if len(x) > 1 else "" for x in text.split()]).strip() def decode(self, logits): probs = logits.cpu().numpy() # probs = logits.numpy() with Pool(self.num_workers) as pool: text = self.decoder.decode_batch(pool, probs) text = [KenLM.lm_postprocess(x) for x in text] return text def convert(inputfile, outfile): target_sr = 16000 data, sample_rate = librosa.load(inputfile) data = librosa.resample(data, orig_sr=sample_rate, target_sr=target_sr) sf.write(outfile, data, target_sr) api_token = os.getenv("API_TOKEN") model_name = "indonesian-nlp/wav2vec2-luganda" processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=api_token) model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=api_token) kenlm = KenLM(processor.tokenizer, "5gram.bin") def parse_transcription(wav_file): filename = wav_file.name.split('.')[0] convert(wav_file.name, filename + "16k.wav") speech, _ = sf.read(filename + "16k.wav") input_values = processor(speech, sampling_rate=16_000, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = kenlm.decode(logits)[0] return transcription output = gr.outputs.Textbox(label="The transcript") input_ = gr.inputs.Audio(source="microphone", type="file") gr.Interface(parse_transcription, inputs=input_, outputs=[output], analytics_enabled=False, title="Automatic Speech Recognition for Luganda", description="Speech Recognition Live Demo for Luganda", article="This demo was built for the " "Mozilla Luganda Automatic Speech Recognition Competition. " "It uses the indonesian-nlp/wav2vec2-luganda model " "which was fine-tuned on Luganda Common Voice speech datasets.", enable_queue=True).launch(inline=False, server_name="0.0.0.0", show_tips=False, enable_queue=True)