--- library_name: transformers base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: dfm results: [] --- # dfm This model is a fine-tuned version of [KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align](https://huggingface.co/KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9417 - Precision: 0.9468 - Recall: 0.9417 - F1: 0.9418 - Loss: 0.4894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:| | No log | 0.9412 | 8 | 0.7223 | 0.7770 | 0.7223 | 0.7069 | 0.8079 | | No log | 2.0 | 17 | 0.7821 | 0.8280 | 0.7821 | 0.7670 | 0.7157 | | No log | 2.9412 | 25 | 0.9217 | 0.9243 | 0.9217 | 0.9174 | 0.3617 | | No log | 4.0 | 34 | 0.9283 | 0.9331 | 0.9283 | 0.9272 | 0.3444 | | No log | 4.9412 | 42 | 0.9156 | 0.9274 | 0.9156 | 0.9168 | 0.4618 | | No log | 6.0 | 51 | 0.9271 | 0.9316 | 0.9271 | 0.9277 | 0.3164 | | No log | 6.9412 | 59 | 0.9356 | 0.9387 | 0.9356 | 0.9349 | 0.3228 | | No log | 8.0 | 68 | 0.9329 | 0.9398 | 0.9329 | 0.9334 | 0.4814 | | No log | 8.9412 | 76 | 0.9402 | 0.9450 | 0.9402 | 0.9400 | 0.4819 | | No log | 10.0 | 85 | 0.9409 | 0.9459 | 0.9409 | 0.9409 | 0.4952 | | No log | 10.9412 | 93 | 0.9367 | 0.9428 | 0.9367 | 0.9370 | 0.5182 | | No log | 12.0 | 102 | 0.9409 | 0.9462 | 0.9409 | 0.9411 | 0.4947 | | No log | 12.9412 | 110 | 0.9405 | 0.9457 | 0.9405 | 0.9406 | 0.4927 | | No log | 14.0 | 119 | 0.9409 | 0.9462 | 0.9409 | 0.9411 | 0.4912 | | No log | 14.9412 | 127 | 0.9413 | 0.9465 | 0.9413 | 0.9414 | 0.4917 | | No log | 16.0 | 136 | 0.9413 | 0.9464 | 0.9413 | 0.9415 | 0.4893 | | No log | 16.9412 | 144 | 0.9413 | 0.9464 | 0.9413 | 0.9415 | 0.4890 | | No log | 18.0 | 153 | 0.9417 | 0.9468 | 0.9417 | 0.9418 | 0.4893 | | No log | 18.8235 | 160 | 0.9417 | 0.9468 | 0.9417 | 0.9418 | 0.4894 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1