MichaelSargious commited on
Commit
f3b5aa9
·
verified ·
1 Parent(s): 0a8c285

Model save

Browse files
Files changed (1) hide show
  1. README.md +14 -10
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-german](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.4387
24
- - Precision: 0.0
25
- - Recall: 0.0
26
- - F1: 0.0
27
- - Accuracy: 0.9150
28
 
29
  ## Model description
30
 
@@ -49,14 +49,18 @@ The following hyperparameters were used during training:
49
  - seed: 42
50
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
  - lr_scheduler_type: linear
52
- - num_epochs: 2
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
58
- | No log | 1.0 | 4 | 0.5376 | 0.0 | 0.0 | 0.0 | 0.9169 |
59
- | No log | 2.0 | 8 | 0.4387 | 0.0 | 0.0 | 0.0 | 0.9150 |
 
 
 
 
60
 
61
 
62
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-german](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2261
24
+ - Precision: 0.1857
25
+ - Recall: 0.0872
26
+ - F1: 0.1187
27
+ - Accuracy: 0.9294
28
 
29
  ## Model description
30
 
 
49
  - seed: 42
50
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 0 | 0 | 14.3585 | 0.0 | 0.0 | 0.0 | 0.0109 |
59
+ | No log | 1.0 | 5 | 0.5506 | 0.0 | 0.0 | 0.0 | 0.9201 |
60
+ | No log | 2.0 | 10 | 0.3615 | 0.0 | 0.0 | 0.0 | 0.9214 |
61
+ | No log | 3.0 | 15 | 0.2907 | 0.0286 | 0.0045 | 0.0077 | 0.9249 |
62
+ | No log | 4.0 | 20 | 0.2449 | 0.2164 | 0.0649 | 0.0998 | 0.9267 |
63
+ | No log | 5.0 | 25 | 0.2261 | 0.1857 | 0.0872 | 0.1187 | 0.9294 |
64
 
65
 
66
  ### Framework versions