--- library_name: transformers base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-german tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model results: [] --- # ner_model This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-german](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2261 - Precision: 0.1857 - Recall: 0.0872 - F1: 0.1187 - Accuracy: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0 | 0 | 14.3585 | 0.0 | 0.0 | 0.0 | 0.0109 | | No log | 1.0 | 5 | 0.5506 | 0.0 | 0.0 | 0.0 | 0.9201 | | No log | 2.0 | 10 | 0.3615 | 0.0 | 0.0 | 0.0 | 0.9214 | | No log | 3.0 | 15 | 0.2907 | 0.0286 | 0.0045 | 0.0077 | 0.9249 | | No log | 4.0 | 20 | 0.2449 | 0.2164 | 0.0649 | 0.0998 | 0.9267 | | No log | 5.0 | 25 | 0.2261 | 0.1857 | 0.0872 | 0.1187 | 0.9294 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.2