--- library_name: transformers license: apache-2.0 base_model: mschiesser/ner-bert-german tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model results: [] --- # ner_model This model is a fine-tuned version of [mschiesser/ner-bert-german](https://huggingface.co/mschiesser/ner-bert-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3135 - Precision: 0.0517 - Recall: 0.0070 - F1: 0.0123 - Accuracy: 0.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0 | 0 | 2.5309 | 0.0 | 0.0 | 0.0 | 0.0171 | | No log | 1.0 | 5 | 0.4653 | 0.0 | 0.0 | 0.0 | 0.9205 | | No log | 2.0 | 10 | 0.3807 | 0.0 | 0.0 | 0.0 | 0.9205 | | No log | 3.0 | 15 | 0.3448 | 0.0323 | 0.0047 | 0.0081 | 0.9269 | | No log | 4.0 | 20 | 0.3248 | 0.0455 | 0.0070 | 0.0121 | 0.9283 | | No log | 5.0 | 25 | 0.3135 | 0.0517 | 0.0070 | 0.0123 | 0.9287 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.2