File size: 2,487 Bytes
1be5c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: distilgpt2
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilgpt2-finetuned

This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6391

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.0748        | 0.0436 | 50   | 3.8923          |
| 3.8414        | 0.0871 | 100  | 3.8125          |
| 3.8957        | 0.1307 | 150  | 3.7769          |
| 3.8723        | 0.1743 | 200  | 3.7545          |
| 4.0205        | 0.2179 | 250  | 3.7336          |
| 3.7175        | 0.2614 | 300  | 3.7282          |
| 3.7778        | 0.3050 | 350  | 3.7111          |
| 3.7763        | 0.3486 | 400  | 3.6994          |
| 3.8142        | 0.3922 | 450  | 3.6945          |
| 3.7654        | 0.4357 | 500  | 3.6831          |
| 3.9636        | 0.4793 | 550  | 3.6773          |
| 3.703         | 0.5229 | 600  | 3.6692          |
| 3.6114        | 0.5664 | 650  | 3.6647          |
| 3.6269        | 0.6100 | 700  | 3.6591          |
| 3.693         | 0.6536 | 750  | 3.6564          |
| 3.7969        | 0.6972 | 800  | 3.6529          |
| 3.6011        | 0.7407 | 850  | 3.6491          |
| 3.4943        | 0.7843 | 900  | 3.6466          |
| 3.7543        | 0.8279 | 950  | 3.6440          |
| 3.861         | 0.8715 | 1000 | 3.6406          |
| 3.5354        | 0.9150 | 1050 | 3.6401          |
| 3.6661        | 0.9586 | 1100 | 3.6396          |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0