File size: 2,545 Bytes
ec3ee8c
 
 
 
 
6b238d3
ec3ee8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
datasets:
- common_language
metrics:
- accuracy
model-index:
- name: wav2vec2-base-lang-id
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: common_language
      type: common_language
      config: full
      split: validation
      args: full
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7800611413043478
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-lang-id

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_language dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2554
- Accuracy: 0.7801

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 1
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.58          | 0.9989 | 693  | 2.5609          | 0.2899   |
| 1.8581        | 1.9989 | 1386 | 2.1486          | 0.4008   |
| 1.3784        | 2.9989 | 2079 | 1.5906          | 0.5666   |
| 0.976         | 3.9989 | 2772 | 1.4036          | 0.6318   |
| 0.6109        | 4.9989 | 3465 | 1.3022          | 0.6695   |
| 0.4357        | 5.9989 | 4158 | 1.2386          | 0.7138   |
| 0.23          | 6.9989 | 4851 | 1.3078          | 0.7221   |
| 0.1461        | 7.9989 | 5544 | 1.2247          | 0.7534   |
| 0.0567        | 8.9989 | 6237 | 1.3279          | 0.7646   |
| 0.0375        | 9.9989 | 6930 | 1.2554          | 0.7801   |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0