Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,80 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- gte
|
10 |
+
- mteb
|
11 |
+
datasets:
|
12 |
+
- Mihaiii/qa-assistant
|
13 |
---
|
14 |
+
# Ivysaur
|
15 |
+
|
16 |
+
This is a fine-tune of [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny) using [qa-assistant](https://huggingface.co/datasets/Mihaiii/qa-assistant).
|
17 |
+
|
18 |
+
## Intended purpose
|
19 |
+
|
20 |
+
<span style="color:blue">This model is designed for use in semantic-autocomplete ([click here for demo](https://mihaiii.github.io/semantic-autocomplete/)).</span>
|
21 |
+
|
22 |
+
## Usage (Sentence-Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny))
|
23 |
+
|
24 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
25 |
+
|
26 |
+
```
|
27 |
+
pip install -U sentence-transformers
|
28 |
+
```
|
29 |
+
|
30 |
+
Then you can use the model like this:
|
31 |
+
|
32 |
+
```python
|
33 |
+
from sentence_transformers import SentenceTransformer
|
34 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
35 |
+
|
36 |
+
model = SentenceTransformer('Mihaiii/Ivysaur')
|
37 |
+
embeddings = model.encode(sentences)
|
38 |
+
print(embeddings)
|
39 |
+
```
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
## Usage (HuggingFace Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny))
|
44 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer, AutoModel
|
48 |
+
import torch
|
49 |
+
|
50 |
+
|
51 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
52 |
+
def mean_pooling(model_output, attention_mask):
|
53 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
54 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
55 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
56 |
+
|
57 |
+
|
58 |
+
# Sentences we want sentence embeddings for
|
59 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
60 |
+
|
61 |
+
# Load model from HuggingFace Hub
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained('Mihaiii/Ivysaur')
|
63 |
+
model = AutoModel.from_pretrained('Mihaiii/Ivysaur')
|
64 |
+
|
65 |
+
# Tokenize sentences
|
66 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
67 |
+
|
68 |
+
# Compute token embeddings
|
69 |
+
with torch.no_grad():
|
70 |
+
model_output = model(**encoded_input)
|
71 |
+
|
72 |
+
# Perform pooling. In this case, mean pooling.
|
73 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
74 |
+
|
75 |
+
print("Sentence embeddings:")
|
76 |
+
print(sentence_embeddings)
|
77 |
+
```
|
78 |
+
|
79 |
+
### Limitation (same as [gte-small](https://huggingface.co/thenlper/gte-small))
|
80 |
+
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
|