File size: 2,960 Bytes
f6cf358
ba77d4f
9b9994e
ba77d4f
 
9b9994e
 
45ff625
 
 
f6cf358
 
45ff625
 
f6cf358
45ff625
f6cf358
45ff625
 
ba77d4f
 
 
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
f6cf358
45ff625
ba77d4f
45ff625
 
 
 
 
 
 
ba77d4f
45ff625
f6cf358
ba77d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ff625
f6cf358
45ff625
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: NbAiLab/nb-whisper-small-verbatim
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: nb-whisper-small-karelian-CodeSwitching
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nb-whisper-small-karelian-CodeSwitching

This model is a fine-tuned version of [NbAiLab/nb-whisper-small-verbatim](https://huggingface.co/NbAiLab/nb-whisper-small-verbatim) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7241
- Wer: 0.3278
- Cer: 0.0999

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 0.1848        | 1.1338  | 500   | 0.6758          | 0.4066 | 0.1227 |
| 0.0796        | 2.2676  | 1000  | 0.6685          | 0.3549 | 0.1015 |
| 0.0492        | 3.4014  | 1500  | 0.7090          | 0.3758 | 0.1088 |
| 0.0426        | 4.5351  | 2000  | 0.7095          | 0.3704 | 0.1083 |
| 0.0311        | 5.6689  | 2500  | 0.7148          | 0.3742 | 0.1138 |
| 0.027         | 6.8027  | 3000  | 0.7173          | 0.3454 | 0.1004 |
| 0.0201        | 7.9365  | 3500  | 0.7261          | 0.3813 | 0.1325 |
| 0.0165        | 9.0703  | 4000  | 0.7158          | 0.3417 | 0.0982 |
| 0.0179        | 10.2041 | 4500  | 0.7261          | 0.3495 | 0.1036 |
| 0.0101        | 11.3379 | 5000  | 0.7275          | 0.3315 | 0.0978 |
| 0.0086        | 12.4717 | 5500  | 0.7437          | 0.3400 | 0.1081 |
| 0.0058        | 13.6054 | 6000  | 0.7524          | 0.3410 | 0.1026 |
| 0.0056        | 14.7392 | 6500  | 0.7256          | 0.3407 | 0.1015 |
| 0.0075        | 15.8730 | 7000  | 0.7202          | 0.3312 | 0.0987 |
| 0.0047        | 17.0068 | 7500  | 0.7266          | 0.3359 | 0.1025 |
| 0.0046        | 18.1406 | 8000  | 0.7271          | 0.3312 | 0.0973 |
| 0.0039        | 19.2744 | 8500  | 0.7334          | 0.3353 | 0.0999 |
| 0.0025        | 20.4082 | 9000  | 0.7280          | 0.3295 | 0.0987 |
| 0.0022        | 21.5420 | 9500  | 0.7290          | 0.3254 | 0.0972 |
| 0.0031        | 22.6757 | 10000 | 0.7241          | 0.3278 | 0.0999 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1