Mikepool117
commited on
Commit
•
88eca77
1
Parent(s):
2fd0024
Second commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.28 +/- 0.53
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc27b0385155ff27f91a677da0abaa24b2cb3a94e786f528815fdad27d6e76c5
|
3 |
+
size 107676
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,19 +24,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000025BAC030790>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000025BAC02E040>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1684399449668086400,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVcQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMP0M6XENvZGVzXHJsXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtCDQPqZYKbxigAc/tCDQPqZYKbxigAc/tCDQPqZYKbxigAc/tCDQPqZYKbxigAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkGMfv3hCVb+Ds6u+3KTBvpBOnj9dx1E/k0ODP8htT798oxU/BBcnv9YNsT/CNq6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.4064995 -0.01033608 0.5293027 ]\n [ 0.4064995 -0.01033608 0.5293027 ]\n [ 0.4064995 -0.01033608 0.5293027 ]\n [ 0.4064995 -0.01033608 0.5293027 ]]",
|
38 |
+
"desired_goal": "[[-0.62261295 -0.8330455 -0.33535394]\n [-0.3782109 1.2367725 0.8194483 ]\n [ 1.0254997 -0.8102689 0.5845258 ]\n [-0.65269494 1.3832347 -1.3610461 ]]",
|
39 |
+
"observation": "[[ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]\n [ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]\n [ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]\n [ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbnoZvtO8pj1czSA+mRClvXmWWT3zq4E+Oq7TPeIA87y7CBE+qqwqPeSoQr2V+gI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.1498811 0.08141484 0.15703338]\n [-0.08059806 0.05312202 0.253265 ]\n [ 0.10335965 -0.02966351 0.14163487]\n [ 0.04166857 -0.04752435 0.00799431]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9Xnaiu28L+UhpRSlIwBbJRLMowBdJRHQJzSq/dqL0l1fZQoaAZoCWgPQwjYYUz6e6npv5SGlFKUaBVLMmgWR0Cc0khgVoHtdX2UKGgGaAloD0MIfhtivOZV9L+UhpRSlGgVSzJoFkdAnNHPLHMlknV9lChoBmgJaA9DCNDv+zcvzvG/lIaUUpRoFUsyaBZHQJzRaoOx0Mh1fZQoaAZoCWgPQwgqxCPx8nTpv5SGlFKUaBVLMmgWR0Cc1GNjbzshdX2UKGgGaAloD0MIsrj/yHRo7r+UhpRSlGgVSzJoFkdAnNP/zOHFgnV9lChoBmgJaA9DCHFzKhkAKvm/lIaUUpRoFUsyaBZHQJzThpi7TUl1fZQoaAZoCWgPQwhCz2bV56r0v5SGlFKUaBVLMmgWR0Cc0yHwPRRedX2UKGgGaAloD0MI2v6VlSal7L+UhpRSlGgVSzJoFkdAnNXajWTX8XV9lChoBmgJaA9DCPQ2NjtSffS/lIaUUpRoFUsyaBZHQJzVdvaURnR1fZQoaAZoCWgPQwhslWBxOPPxv5SGlFKUaBVLMmgWR0Cc1P3CsOoYdX2UKGgGaAloD0MI1jcwuVHk57+UhpRSlGgVSzJoFkdAnNSZGe+VT3V9lChoBmgJaA9DCMiakUHuou2/lIaUUpRoFUsyaBZHQJzXQ/KQq7R1fZQoaAZoCWgPQwgvw3+6gYLvv5SGlFKUaBVLMmgWR0Cc1uBbwBo3dX2UKGgGaAloD0MIATPfwU8c7r+UhpRSlGgVSzJoFkdAnNZnJ5mh/XV9lChoBmgJaA9DCL1w58JIL+K/lIaUUpRoFUsyaBZHQJzWAn7YTTR1fZQoaAZoCWgPQwibBG9IowL0v5SGlFKUaBVLMmgWR0Cc2Mv3JxNqdX2UKGgGaAloD0MIyqgyjLtB9r+UhpRSlGgVSzJoFkdAnNhnWattAXV9lChoBmgJaA9DCNFbPLznAPK/lIaUUpRoFUsyaBZHQJzX7iVB2Oh1fZQoaAZoCWgPQwjBVDNrKWD6v5SGlFKUaBVLMmgWR0Cc14h11W8zdX2UKGgGaAloD0MIMT83NGUn47+UhpRSlGgVSzJoFkdAnNqJjMFEA3V9lChoBmgJaA9DCBE4EmiwafG/lIaUUpRoFUsyaBZHQJzaJfXwsoV1fZQoaAZoCWgPQwj0T3Cxogbtv5SGlFKUaBVLMmgWR0Cc2au7HyVfdX2UKGgGaAloD0MISRKEK6BQ1b+UhpRSlGgVSzJoFkdAnNlHEl3QlnV9lChoBmgJaA9DCGQhOgSOhPW/lIaUUpRoFUsyaBZHQJzcEsVclgN1fZQoaAZoCWgPQwjbMAqCx3f2v5SGlFKUaBVLMmgWR0Cc264n4O+adX2UKGgGaAloD0MI58dfWtTn8L+UhpRSlGgVSzJoFkdAnNs087p3YHV9lChoBmgJaA9DCBoxs89jlO+/lIaUUpRoFUsyaBZHQJzaz0QK8cx1fZQoaAZoCWgPQwguVz82yQ/yv5SGlFKUaBVLMmgWR0Cc3Z8Sf16FdX2UKGgGaAloD0MI6zpUU5L17r+UhpRSlGgVSzJoFkdAnN07e/Ho5nV9lChoBmgJaA9DCBBdUN8y5/e/lIaUUpRoFUsyaBZHQJzcwkfLcKx1fZQoaAZoCWgPQwi+hAoOL4jmv5SGlFKUaBVLMmgWR0Cc3FyYG+sYdX2UKGgGaAloD0MI3NlXHqQn6b+UhpRSlGgVSzJoFkdAnN9XhfjS5XV9lChoBmgJaA9DCOxq8pTVdOu/lIaUUpRoFUsyaBZHQJze8+8oQWh1fZQoaAZoCWgPQwhXfEPhszX4v5SGlFKUaBVLMmgWR0Cc3nq7AckudX2UKGgGaAloD0MIXcR3YtbL8L+UhpRSlGgVSzJoFkdAnN4XGS6lL3V9lChoBmgJaA9DCM++8iA9xfy/lIaUUpRoFUsyaBZHQJzg4sxwhnt1fZQoaAZoCWgPQwhioGtfQO/2v5SGlFKUaBVLMmgWR0Cc4H81n/T9dX2UKGgGaAloD0MIVHQkl/+Q9L+UhpRSlGgVSzJoFkdAnOAGAbyYonV9lChoBmgJaA9DCEp87gT7b/O/lIaUUpRoFUsyaBZHQJzfoVj7Q9l1fZQoaAZoCWgPQwgSh2wgXSzyv5SGlFKUaBVLMmgWR0Cc4mwFkhA4dX2UKGgGaAloD0MIwRw9fm9T/b+UhpRSlGgVSzJoFkdAnOIIbn5i3HV9lChoBmgJaA9DCFUUr7K2Kee/lIaUUpRoFUsyaBZHQJzhjzpX6qN1fZQoaAZoCWgPQwh+/+bFia/5v5SGlFKUaBVLMmgWR0Cc4SqRlpXZdX2UKGgGaAloD0MItYzUeyrn8b+UhpRSlGgVSzJoFkdAnOPi1uzhP3V9lChoBmgJaA9DCIF2hxQD5PO/lIaUUpRoFUsyaBZHQJzjfjkuHvd1fZQoaAZoCWgPQwhE/S5szRb+v5SGlFKUaBVLMmgWR0Cc4wUFSsKcdX2UKGgGaAloD0MIYhIu5BGc+L+UhpRSlGgVSzJoFkdAnOKgXIlt0nV9lChoBmgJaA9DCK0x6ITQgfG/lIaUUpRoFUsyaBZHQJzlWZTho/R1fZQoaAZoCWgPQwj/XDRkPEr6v5SGlFKUaBVLMmgWR0Cc5PX+ERJ3dX2UKGgGaAloD0MI6+I2GsCb97+UhpRSlGgVSzJoFkdAnOR8yeqaPXV9lChoBmgJaA9DCG7DKAge3/y/lIaUUpRoFUsyaBZHQJzkGCEpRXR1fZQoaAZoCWgPQwjs3orEBFUAwJSGlFKUaBVLMmgWR0Cc5qxjriVCdX2UKGgGaAloD0MIshGI1/UL/b+UhpRSlGgVSzJoFkdAnOZIzN2TxHV9lChoBmgJaA9DCOtU+Z6RSPG/lIaUUpRoFUsyaBZHQJzlzpIMBp51fZQoaAZoCWgPQwjY9Qt2w7YDwJSGlFKUaBVLMmgWR0Cc5WnpSrHVdX2UKGgGaAloD0MIUkfH1cgu/b+UhpRSlGgVSzJoFkdAnOf7FwT/Q3V9lChoBmgJaA9DCIUn9PqTOPe/lIaUUpRoFUsyaBZHQJznl4B3iaR1fZQoaAZoCWgPQwiS6ju/KMH1v5SGlFKUaBVLMmgWR0Cc5x1FYuCgdX2UKGgGaAloD0MIpP/lWrTA97+UhpRSlGgVSzJoFkdAnOa4nKGL1nV9lChoBmgJaA9DCOfhBKbTOv2/lIaUUpRoFUsyaBZHQJzpVA6dUbV1fZQoaAZoCWgPQwjkgcgiTfz0v5SGlFKUaBVLMmgWR0Cc6O9xIatLdX2UKGgGaAloD0MIbw7Xag/7+L+UhpRSlGgVSzJoFkdAnOh1NlAeJnV9lChoBmgJaA9DCHDpmPOM/QHAlIaUUpRoFUsyaBZHQJzoEI1LrX11fZQoaAZoCWgPQwgYlGk0ufgEwJSGlFKUaBVLMmgWR0Cc6si++M6zdX2UKGgGaAloD0MIGF3eHK6V+L+UhpRSlGgVSzJoFkdAnOpkIToMa3V9lChoBmgJaA9DCG1TPC6qxfG/lIaUUpRoFUsyaBZHQJzp6u1WsBB1fZQoaAZoCWgPQwh9k6ZB0fz9v5SGlFKUaBVLMmgWR0Cc6YU9pyp8dX2UKGgGaAloD0MIE2BY/nxb8r+UhpRSlGgVSzJoFkdAnOw1OCXhO3V9lChoBmgJaA9DCL1tpkI8Uva/lIaUUpRoFUsyaBZHQJzr0aESM991fZQoaAZoCWgPQwjohqbs9IPsv5SGlFKUaBVLMmgWR0Cc61htLteEdX2UKGgGaAloD0MIbJih8USQ9L+UhpRSlGgVSzJoFkdAnOrzxG2CunV9lChoBmgJaA9DCK/RcqCH2t+/lIaUUpRoFUsyaBZHQJztwH0K7Zp1fZQoaAZoCWgPQwjqWnufqsLrv5SGlFKUaBVLMmgWR0Cc7VzmfXf7dX2UKGgGaAloD0MI/3qFBfcD4b+UhpRSlGgVSzJoFkdAnOziq6vq1XV9lChoBmgJaA9DCKvLKQExaQDAlIaUUpRoFUsyaBZHQJzsfgKnei11fZQoaAZoCWgPQwjwv5Xs2Ej9v5SGlFKUaBVLMmgWR0Cc71Y3vQWvdX2UKGgGaAloD0MISu1FtB0T8L+UhpRSlGgVSzJoFkdAnO7yoOx0MnV9lChoBmgJaA9DCD230JUIVPO/lIaUUpRoFUsyaBZHQJzueWzF+/h1fZQoaAZoCWgPQwg3wqIiTgcAwJSGlFKUaBVLMmgWR0Cc7hTEBKcvdX2UKGgGaAloD0MIOzYC8bp++r+UhpRSlGgVSzJoFkdAnPDH05EMLHV9lChoBmgJaA9DCL9IaMu5VPG/lIaUUpRoFUsyaBZHQJzwZDzAeq91fZQoaAZoCWgPQwgAOPbsuYz7v5SGlFKUaBVLMmgWR0Cc7+sImgJ1dX2UKGgGaAloD0MIeCgK9ImcAsCUhpRSlGgVSzJoFkdAnO+GX9itrHV9lChoBmgJaA9DCNtugm+avuW/lIaUUpRoFUsyaBZHQJzyTPD50r91fZQoaAZoCWgPQwiOzCN/MHDsv5SGlFKUaBVLMmgWR0Cc8elaKUFCdX2UKGgGaAloD0MIuOUjKemh8b+UhpRSlGgVSzJoFkdAnPFwJkXk53V9lChoBmgJaA9DCPqXpDLFXPC/lIaUUpRoFUsyaBZHQJzxC32EkB11fZQoaAZoCWgPQwj+gAcGEL7jv5SGlFKUaBVLMmgWR0Cc9ARdhRZVdX2UKGgGaAloD0MIoIhFDDtsAcCUhpRSlGgVSzJoFkdAnPOgxrSE13V9lChoBmgJaA9DCIxl+iXiLem/lIaUUpRoFUsyaBZHQJzzJovi97F1fZQoaAZoCWgPQwjF46JaRJT0v5SGlFKUaBVLMmgWR0Cc8sHjIaLodX2UKGgGaAloD0MILlVpi2u8/L+UhpRSlGgVSzJoFkdAnPW2p2ll9XV9lChoBmgJaA9DCOdtbHak+gfAlIaUUpRoFUsyaBZHQJz1UxDb8FZ1fZQoaAZoCWgPQwjhfOpYpXTvv5SGlFKUaBVLMmgWR0Cc9NjVx0dSdX2UKGgGaAloD0MIXOUJhJ3i87+UhpRSlGgVSzJoFkdAnPR0LQXyiHV9lChoBmgJaA9DCD4+ITtvowLAlIaUUpRoFUsyaBZHQJz3ZNRFZxJ1fZQoaAZoCWgPQwhd4sgDkSUAwJSGlFKUaBVLMmgWR0Cc9wE9Mbm2dX2UKGgGaAloD0MIbojxmle18r+UhpRSlGgVSzJoFkdAnPaHAmAskXV9lChoBmgJaA9DCJijx+9tevu/lIaUUpRoFUsyaBZHQJz2I2CNCJJ1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75018e52f7d84e16838b87fc6b96f8cf37ad403a7783f2b3b977a0b9e742ccfe
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13653e43aee8dac6d961a0e55c19b3f0fa2f3b51e7ce8c1d12f2d97cde16d4b5
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS:
|
2 |
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 2.0.
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.3
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc012a92c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc012a86d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684393614044598667, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAe83QPmo+gbyjuBc/e83QPmo+gbyjuBc/e83QPmo+gbyjuBc/e83QPmo+gbyjuBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+ZRWP7kDkL/I960/G/y7P1Iq3b/mxgg/UFp3P692i78as1a9GSQJv6MbSz8ocZe+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB7zdA+aj6BvKO4Fz+N/fs7xJx1O+kqMjt7zdA+aj6BvKO4Fz+N/fs7xJx1O+kqMjt7zdA+aj6BvKO4Fz+N/fs7xJx1O+kqMjt7zdA+aj6BvKO4Fz+N/fs7xJx1O+kqMjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4078177 -0.01577683 0.5926611 ]\n [ 0.4078177 -0.01577683 0.5926611 ]\n [ 0.4078177 -0.01577683 0.5926611 ]\n [ 0.4078177 -0.01577683 0.5926611 ]]", "desired_goal": "[[ 0.83821064 -1.1251136 1.3591242 ]\n [ 1.4686311 -1.727854 0.53428495]\n [ 0.9662218 -1.0895594 -0.0524169 ]\n [-0.53570706 0.79339045 -0.2957852 ]]", "observation": "[[ 0.4078177 -0.01577683 0.5926611 0.00769014 0.00374775 0.00271862]\n [ 0.4078177 -0.01577683 0.5926611 0.00769014 0.00374775 0.00271862]\n [ 0.4078177 -0.01577683 0.5926611 0.00769014 0.00374775 0.00271862]\n [ 0.4078177 -0.01577683 0.5926611 0.00769014 0.00374775 0.00271862]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJRGtPVFwQr1XD1g+LrOePb58BL5YGMI9eyMTvtf9Dz4U93k+4jTTvXlkrr0IIfU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08450536 -0.04747039 0.21099602]\n [ 0.0774902 -0.1293821 0.09477299]\n [-0.14369003 0.14061676 0.24410659]\n [-0.10312821 -0.08515257 0.11969191]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILJ/leXCXIcCUhpRSlIwBbJRLMowBdJRHQKZzuZ3s5XF1fZQoaAZoCWgPQwjlnNhD+ygXwJSGlFKUaBVLMmgWR0Cmc2bdadMCdX2UKGgGaAloD0MIh1J7EW2nG8CUhpRSlGgVSzJoFkdApnMXivPkaXV9lChoBmgJaA9DCH4eozzzIh/AlIaUUpRoFUsyaBZHQKZyxX1anrJ1fZQoaAZoCWgPQwg0vFmD99UXwJSGlFKUaBVLMmgWR0CmdLIgmqo7dX2UKGgGaAloD0MI9fdSeND8GcCUhpRSlGgVSzJoFkdApnRf4bjtHHV9lChoBmgJaA9DCPOtD+uNyhPAlIaUUpRoFUsyaBZHQKZ0EF4cFQl1fZQoaAZoCWgPQwhxdJXurkMYwJSGlFKUaBVLMmgWR0Cmc75X2dupdX2UKGgGaAloD0MIRibg10iiLcCUhpRSlGgVSzJoFkdApnW4+GGmDXV9lChoBmgJaA9DCDCbAMPyZxPAlIaUUpRoFUsyaBZHQKZ1ZzpX6qN1fZQoaAZoCWgPQwgA4q5eRdYcwJSGlFKUaBVLMmgWR0CmdRnS4OMEdX2UKGgGaAloD0MIkSdJ10yOI8CUhpRSlGgVSzJoFkdApnTIcxTKknV9lChoBmgJaA9DCIdQpWYPFCPAlIaUUpRoFUsyaBZHQKZ2qqkM1CR1fZQoaAZoCWgPQwgs1nCRe+odwJSGlFKUaBVLMmgWR0CmdlgNPP9ldX2UKGgGaAloD0MI/aTap+NxJMCUhpRSlGgVSzJoFkdApnYIvi97GHV9lChoBmgJaA9DCI/FNqloHCPAlIaUUpRoFUsyaBZHQKZ1ttnf2sd1fZQoaAZoCWgPQwjcK/NWXUcbwJSGlFKUaBVLMmgWR0Cmd6DJdSl4dX2UKGgGaAloD0MIxvgwe9kGHsCUhpRSlGgVSzJoFkdApndN+1Bt13V9lChoBmgJaA9DCDwXRnpReyzAlIaUUpRoFUsyaBZHQKZ2/kbxVhl1fZQoaAZoCWgPQwh+O4kI/2IYwJSGlFKUaBVLMmgWR0CmdqyEtdzGdX2UKGgGaAloD0MIliNkIM9+H8CUhpRSlGgVSzJoFkdApniNOXVslHV9lChoBmgJaA9DCO4IpwUviiPAlIaUUpRoFUsyaBZHQKZ4OpQ1rIp1fZQoaAZoCWgPQwjRWWYRioUkwJSGlFKUaBVLMmgWR0Cmd+stTUAldX2UKGgGaAloD0MI86ykFd/IIcCUhpRSlGgVSzJoFkdApneZG2Cul3V9lChoBmgJaA9DCGrAIOnT+h7AlIaUUpRoFUsyaBZHQKZ5fp48lol1fZQoaAZoCWgPQwjYZmMl5rkgwJSGlFKUaBVLMmgWR0CmeSvz4DcNdX2UKGgGaAloD0MI9fV8zXJJGcCUhpRSlGgVSzJoFkdApnjdETg2qHV9lChoBmgJaA9DCNLGEWvxCSHAlIaUUpRoFUsyaBZHQKZ4ivaDf3x1fZQoaAZoCWgPQwie7GZGP8onwJSGlFKUaBVLMmgWR0CmenUwaisXdX2UKGgGaAloD0MIg4b+CS6WIMCUhpRSlGgVSzJoFkdApnoizNUwSXV9lChoBmgJaA9DCAH3PH/aECLAlIaUUpRoFUsyaBZHQKZ50yDZlFt1fZQoaAZoCWgPQwgaTpmbbwQowJSGlFKUaBVLMmgWR0CmeYE8ifQKdX2UKGgGaAloD0MIeo1donojLcCUhpRSlGgVSzJoFkdApnuWD+R5knV9lChoBmgJaA9DCD6Skh6G5hfAlIaUUpRoFUsyaBZHQKZ7RGYKIBR1fZQoaAZoCWgPQwhd34eDhGggwJSGlFKUaBVLMmgWR0CmevWzF+/hdX2UKGgGaAloD0MIdZKtLqfUF8CUhpRSlGgVSzJoFkdApnqkKXv6THV9lChoBmgJaA9DCPm7d9SYoCfAlIaUUpRoFUsyaBZHQKZ9PoyKvV51fZQoaAZoCWgPQwjC/BUyV0YlwJSGlFKUaBVLMmgWR0CmfO0utfXxdX2UKGgGaAloD0MIDVGFP8OLF8CUhpRSlGgVSzJoFkdApnyeGZeAu3V9lChoBmgJaA9DCO52vTRFaCLAlIaUUpRoFUsyaBZHQKZ8TktEofF1fZQoaAZoCWgPQwiqm4u/7RkdwJSGlFKUaBVLMmgWR0CmfqdqUNaydX2UKGgGaAloD0MI5A8GnnsPFsCUhpRSlGgVSzJoFkdApn5VYKYzBXV9lChoBmgJaA9DCP89eO3S/iXAlIaUUpRoFUsyaBZHQKZ+Bmxt52R1fZQoaAZoCWgPQwhmvoOfOBAmwJSGlFKUaBVLMmgWR0CmfbUtRNypdX2UKGgGaAloD0MIAWxAhLhyIcCUhpRSlGgVSzJoFkdApoBGQuEmIHV9lChoBmgJaA9DCNLgtrbwtCLAlIaUUpRoFUsyaBZHQKZ/9aEBbOh1fZQoaAZoCWgPQwiwHYzYJ7AhwJSGlFKUaBVLMmgWR0Cmf6b8Nx2jdX2UKGgGaAloD0MIrg6AuKunI8CUhpRSlGgVSzJoFkdApn9YNI9TxXV9lChoBmgJaA9DCKX2ItqOSSPAlIaUUpRoFUsyaBZHQKaB7AiV0Ld1fZQoaAZoCWgPQwiSdw5lqDolwJSGlFKUaBVLMmgWR0CmgZnQY1pCdX2UKGgGaAloD0MIUiY1tAEoHsCUhpRSlGgVSzJoFkdApoFLsKLKm3V9lChoBmgJaA9DCO+qB8xDXiDAlIaUUpRoFUsyaBZHQKaA+mrsByV1fZQoaAZoCWgPQwhHkiBcAXUdwJSGlFKUaBVLMmgWR0Cmg3YBvJiidX2UKGgGaAloD0MI2hznNuGuIMCUhpRSlGgVSzJoFkdApoMj9GZuynV9lChoBmgJaA9DCHDtRElIlCLAlIaUUpRoFUsyaBZHQKaC1QMQVbl1fZQoaAZoCWgPQwjItDaN7RUiwJSGlFKUaBVLMmgWR0CmgoPPkaMrdX2UKGgGaAloD0MIBd1e0hjdJ8CUhpRSlGgVSzJoFkdApoUbBEa2nnV9lChoBmgJaA9DCIeMR6mEPybAlIaUUpRoFUsyaBZHQKaEyQtjCpF1fZQoaAZoCWgPQwhmEB/Y8WcqwJSGlFKUaBVLMmgWR0CmhHnbItDldX2UKGgGaAloD0MI9RH4w8/fJcCUhpRSlGgVSzJoFkdApoQoVZcLSnV9lChoBmgJaA9DCOZZSSu+YSXAlIaUUpRoFUsyaBZHQKaGjWvr4WV1fZQoaAZoCWgPQwiADB07qKQdwJSGlFKUaBVLMmgWR0CmhjqxTsIFdX2UKGgGaAloD0MI2QbuQJ1CGcCUhpRSlGgVSzJoFkdApoXrxd6cAnV9lChoBmgJaA9DCCP2CaAYkSHAlIaUUpRoFUsyaBZHQKaFmcjqv/11fZQoaAZoCWgPQwhs0Jfe/kwvwJSGlFKUaBVLMmgWR0Cmh4nfdhy9dX2UKGgGaAloD0MIHQJHAg2GHMCUhpRSlGgVSzJoFkdApoc3UvwmV3V9lChoBmgJaA9DCM9J7xtf4yLAlIaUUpRoFUsyaBZHQKaG584Pwux1fZQoaAZoCWgPQwgn3gGetDgmwJSGlFKUaBVLMmgWR0CmhpaPS2H+dX2UKGgGaAloD0MI6x7ZXDW3KMCUhpRSlGgVSzJoFkdApoh57JGOMnV9lChoBmgJaA9DCN0J9l/nViDAlIaUUpRoFUsyaBZHQKaIJ3cHnlp1fZQoaAZoCWgPQwhyjGSPUNsrwJSGlFKUaBVLMmgWR0Cmh9fNJOFhdX2UKGgGaAloD0MIi6n0E86+GcCUhpRSlGgVSzJoFkdApoeFqL0jDHV9lChoBmgJaA9DCOKvyRr1uCfAlIaUUpRoFUsyaBZHQKaJf5AyEct1fZQoaAZoCWgPQwhAa378peUfwJSGlFKUaBVLMmgWR0CmiS1gx8D0dX2UKGgGaAloD0MI5Nu7Bn1hIcCUhpRSlGgVSzJoFkdApojeN70Fr3V9lChoBmgJaA9DCBBaD18mChzAlIaUUpRoFUsyaBZHQKaIjEc81XN1fZQoaAZoCWgPQwj7PhwkRFkqwJSGlFKUaBVLMmgWR0Cmimdj5KvndX2UKGgGaAloD0MIONpxw+8WKcCUhpRSlGgVSzJoFkdApooUtGus93V9lChoBmgJaA9DCJeNzvkpPhfAlIaUUpRoFUsyaBZHQKaJxUbT+eh1fZQoaAZoCWgPQwhZiuQrgdQewJSGlFKUaBVLMmgWR0CmiXQV0tAcdX2UKGgGaAloD0MIKLou/OBsG8CUhpRSlGgVSzJoFkdApotY7V8TjHV9lChoBmgJaA9DCL9jeOxnISTAlIaUUpRoFUsyaBZHQKaLBlMAWBV1fZQoaAZoCWgPQwhi26LMBrEhwJSGlFKUaBVLMmgWR0CmirckdFOPdX2UKGgGaAloD0MIQWSRJt6RMMCUhpRSlGgVSzJoFkdApoplD+irUHV9lChoBmgJaA9DCD90QX3L9DDAlIaUUpRoFUsyaBZHQKaMZGWD6Fd1fZQoaAZoCWgPQwhkIxCv6wcswJSGlFKUaBVLMmgWR0CmjBGetjkNdX2UKGgGaAloD0MIeo8zTdhGKcCUhpRSlGgVSzJoFkdApovCEvkBCHV9lChoBmgJaA9DCAMlBRbA1B/AlIaUUpRoFUsyaBZHQKaLcMCLdep1fZQoaAZoCWgPQwh32hoRjKMewJSGlFKUaBVLMmgWR0CmjU8Bltj1dX2UKGgGaAloD0MIPbZlwFlCJsCUhpRSlGgVSzJoFkdApoz8jgQ6IXV9lChoBmgJaA9DCDMbZJKRQyHAlIaUUpRoFUsyaBZHQKaMrOj7AL11fZQoaAZoCWgPQwjBxYoaTGMYwJSGlFKUaBVLMmgWR0CmjFslC1JEdX2UKGgGaAloD0MIsYf2sYJ/JMCUhpRSlGgVSzJoFkdApo44hyKekHV9lChoBmgJaA9DCFFoWfePpRzAlIaUUpRoFUsyaBZHQKaN5k92X9l1fZQoaAZoCWgPQwhbI4JxcA0wwJSGlFKUaBVLMmgWR0CmjZearmyPdX2UKGgGaAloD0MIhUTaxp8oGMCUhpRSlGgVSzJoFkdApo1FrhzeXXV9lChoBmgJaA9DCICdmzbjDC/AlIaUUpRoFUsyaBZHQKaPMsySFGp1fZQoaAZoCWgPQwjRdHYyOJocwJSGlFKUaBVLMmgWR0CmjuAymALBdX2UKGgGaAloD0MIF2U2yCRjJcCUhpRSlGgVSzJoFkdApo6QjIJZ4nV9lChoBmgJaA9DCOYGQx1WiCbAlIaUUpRoFUsyaBZHQKaOPmq5sj51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000025BAC030790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000025BAC02E040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684399449668086400, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVcQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMP0M6XENvZGVzXHJsXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtCDQPqZYKbxigAc/tCDQPqZYKbxigAc/tCDQPqZYKbxigAc/tCDQPqZYKbxigAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkGMfv3hCVb+Ds6u+3KTBvpBOnj9dx1E/k0ODP8htT798oxU/BBcnv9YNsT/CNq6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4064995 -0.01033608 0.5293027 ]\n [ 0.4064995 -0.01033608 0.5293027 ]\n [ 0.4064995 -0.01033608 0.5293027 ]\n [ 0.4064995 -0.01033608 0.5293027 ]]", "desired_goal": "[[-0.62261295 -0.8330455 -0.33535394]\n [-0.3782109 1.2367725 0.8194483 ]\n [ 1.0254997 -0.8102689 0.5845258 ]\n [-0.65269494 1.3832347 -1.3610461 ]]", "observation": "[[ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]\n [ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]\n [ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]\n [ 0.4064995 -0.01033608 0.5293027 0.02150927 -0.00319388 0.016357 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbnoZvtO8pj1czSA+mRClvXmWWT3zq4E+Oq7TPeIA87y7CBE+qqwqPeSoQr2V+gI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1498811 0.08141484 0.15703338]\n [-0.08059806 0.05312202 0.253265 ]\n [ 0.10335965 -0.02966351 0.14163487]\n [ 0.04166857 -0.04752435 0.00799431]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9Xnaiu28L+UhpRSlIwBbJRLMowBdJRHQJzSq/dqL0l1fZQoaAZoCWgPQwjYYUz6e6npv5SGlFKUaBVLMmgWR0Cc0khgVoHtdX2UKGgGaAloD0MIfhtivOZV9L+UhpRSlGgVSzJoFkdAnNHPLHMlknV9lChoBmgJaA9DCNDv+zcvzvG/lIaUUpRoFUsyaBZHQJzRaoOx0Mh1fZQoaAZoCWgPQwgqxCPx8nTpv5SGlFKUaBVLMmgWR0Cc1GNjbzshdX2UKGgGaAloD0MIsrj/yHRo7r+UhpRSlGgVSzJoFkdAnNP/zOHFgnV9lChoBmgJaA9DCHFzKhkAKvm/lIaUUpRoFUsyaBZHQJzThpi7TUl1fZQoaAZoCWgPQwhCz2bV56r0v5SGlFKUaBVLMmgWR0Cc0yHwPRRedX2UKGgGaAloD0MI2v6VlSal7L+UhpRSlGgVSzJoFkdAnNXajWTX8XV9lChoBmgJaA9DCPQ2NjtSffS/lIaUUpRoFUsyaBZHQJzVdvaURnR1fZQoaAZoCWgPQwhslWBxOPPxv5SGlFKUaBVLMmgWR0Cc1P3CsOoYdX2UKGgGaAloD0MI1jcwuVHk57+UhpRSlGgVSzJoFkdAnNSZGe+VT3V9lChoBmgJaA9DCMiakUHuou2/lIaUUpRoFUsyaBZHQJzXQ/KQq7R1fZQoaAZoCWgPQwgvw3+6gYLvv5SGlFKUaBVLMmgWR0Cc1uBbwBo3dX2UKGgGaAloD0MIATPfwU8c7r+UhpRSlGgVSzJoFkdAnNZnJ5mh/XV9lChoBmgJaA9DCL1w58JIL+K/lIaUUpRoFUsyaBZHQJzWAn7YTTR1fZQoaAZoCWgPQwibBG9IowL0v5SGlFKUaBVLMmgWR0Cc2Mv3JxNqdX2UKGgGaAloD0MIyqgyjLtB9r+UhpRSlGgVSzJoFkdAnNhnWattAXV9lChoBmgJaA9DCNFbPLznAPK/lIaUUpRoFUsyaBZHQJzX7iVB2Oh1fZQoaAZoCWgPQwjBVDNrKWD6v5SGlFKUaBVLMmgWR0Cc14h11W8zdX2UKGgGaAloD0MIMT83NGUn47+UhpRSlGgVSzJoFkdAnNqJjMFEA3V9lChoBmgJaA9DCBE4EmiwafG/lIaUUpRoFUsyaBZHQJzaJfXwsoV1fZQoaAZoCWgPQwj0T3Cxogbtv5SGlFKUaBVLMmgWR0Cc2au7HyVfdX2UKGgGaAloD0MISRKEK6BQ1b+UhpRSlGgVSzJoFkdAnNlHEl3QlnV9lChoBmgJaA9DCGQhOgSOhPW/lIaUUpRoFUsyaBZHQJzcEsVclgN1fZQoaAZoCWgPQwjbMAqCx3f2v5SGlFKUaBVLMmgWR0Cc264n4O+adX2UKGgGaAloD0MI58dfWtTn8L+UhpRSlGgVSzJoFkdAnNs087p3YHV9lChoBmgJaA9DCBoxs89jlO+/lIaUUpRoFUsyaBZHQJzaz0QK8cx1fZQoaAZoCWgPQwguVz82yQ/yv5SGlFKUaBVLMmgWR0Cc3Z8Sf16FdX2UKGgGaAloD0MI6zpUU5L17r+UhpRSlGgVSzJoFkdAnN07e/Ho5nV9lChoBmgJaA9DCBBdUN8y5/e/lIaUUpRoFUsyaBZHQJzcwkfLcKx1fZQoaAZoCWgPQwi+hAoOL4jmv5SGlFKUaBVLMmgWR0Cc3FyYG+sYdX2UKGgGaAloD0MI3NlXHqQn6b+UhpRSlGgVSzJoFkdAnN9XhfjS5XV9lChoBmgJaA9DCOxq8pTVdOu/lIaUUpRoFUsyaBZHQJze8+8oQWh1fZQoaAZoCWgPQwhXfEPhszX4v5SGlFKUaBVLMmgWR0Cc3nq7AckudX2UKGgGaAloD0MIXcR3YtbL8L+UhpRSlGgVSzJoFkdAnN4XGS6lL3V9lChoBmgJaA9DCM++8iA9xfy/lIaUUpRoFUsyaBZHQJzg4sxwhnt1fZQoaAZoCWgPQwhioGtfQO/2v5SGlFKUaBVLMmgWR0Cc4H81n/T9dX2UKGgGaAloD0MIVHQkl/+Q9L+UhpRSlGgVSzJoFkdAnOAGAbyYonV9lChoBmgJaA9DCEp87gT7b/O/lIaUUpRoFUsyaBZHQJzfoVj7Q9l1fZQoaAZoCWgPQwgSh2wgXSzyv5SGlFKUaBVLMmgWR0Cc4mwFkhA4dX2UKGgGaAloD0MIwRw9fm9T/b+UhpRSlGgVSzJoFkdAnOIIbn5i3HV9lChoBmgJaA9DCFUUr7K2Kee/lIaUUpRoFUsyaBZHQJzhjzpX6qN1fZQoaAZoCWgPQwh+/+bFia/5v5SGlFKUaBVLMmgWR0Cc4SqRlpXZdX2UKGgGaAloD0MItYzUeyrn8b+UhpRSlGgVSzJoFkdAnOPi1uzhP3V9lChoBmgJaA9DCIF2hxQD5PO/lIaUUpRoFUsyaBZHQJzjfjkuHvd1fZQoaAZoCWgPQwhE/S5szRb+v5SGlFKUaBVLMmgWR0Cc4wUFSsKcdX2UKGgGaAloD0MIYhIu5BGc+L+UhpRSlGgVSzJoFkdAnOKgXIlt0nV9lChoBmgJaA9DCK0x6ITQgfG/lIaUUpRoFUsyaBZHQJzlWZTho/R1fZQoaAZoCWgPQwj/XDRkPEr6v5SGlFKUaBVLMmgWR0Cc5PX+ERJ3dX2UKGgGaAloD0MI6+I2GsCb97+UhpRSlGgVSzJoFkdAnOR8yeqaPXV9lChoBmgJaA9DCG7DKAge3/y/lIaUUpRoFUsyaBZHQJzkGCEpRXR1fZQoaAZoCWgPQwjs3orEBFUAwJSGlFKUaBVLMmgWR0Cc5qxjriVCdX2UKGgGaAloD0MIshGI1/UL/b+UhpRSlGgVSzJoFkdAnOZIzN2TxHV9lChoBmgJaA9DCOtU+Z6RSPG/lIaUUpRoFUsyaBZHQJzlzpIMBp51fZQoaAZoCWgPQwjY9Qt2w7YDwJSGlFKUaBVLMmgWR0Cc5WnpSrHVdX2UKGgGaAloD0MIUkfH1cgu/b+UhpRSlGgVSzJoFkdAnOf7FwT/Q3V9lChoBmgJaA9DCIUn9PqTOPe/lIaUUpRoFUsyaBZHQJznl4B3iaR1fZQoaAZoCWgPQwiS6ju/KMH1v5SGlFKUaBVLMmgWR0Cc5x1FYuCgdX2UKGgGaAloD0MIpP/lWrTA97+UhpRSlGgVSzJoFkdAnOa4nKGL1nV9lChoBmgJaA9DCOfhBKbTOv2/lIaUUpRoFUsyaBZHQJzpVA6dUbV1fZQoaAZoCWgPQwjkgcgiTfz0v5SGlFKUaBVLMmgWR0Cc6O9xIatLdX2UKGgGaAloD0MIbw7Xag/7+L+UhpRSlGgVSzJoFkdAnOh1NlAeJnV9lChoBmgJaA9DCHDpmPOM/QHAlIaUUpRoFUsyaBZHQJzoEI1LrX11fZQoaAZoCWgPQwgYlGk0ufgEwJSGlFKUaBVLMmgWR0Cc6si++M6zdX2UKGgGaAloD0MIGF3eHK6V+L+UhpRSlGgVSzJoFkdAnOpkIToMa3V9lChoBmgJaA9DCG1TPC6qxfG/lIaUUpRoFUsyaBZHQJzp6u1WsBB1fZQoaAZoCWgPQwh9k6ZB0fz9v5SGlFKUaBVLMmgWR0Cc6YU9pyp8dX2UKGgGaAloD0MIE2BY/nxb8r+UhpRSlGgVSzJoFkdAnOw1OCXhO3V9lChoBmgJaA9DCL1tpkI8Uva/lIaUUpRoFUsyaBZHQJzr0aESM991fZQoaAZoCWgPQwjohqbs9IPsv5SGlFKUaBVLMmgWR0Cc61htLteEdX2UKGgGaAloD0MIbJih8USQ9L+UhpRSlGgVSzJoFkdAnOrzxG2CunV9lChoBmgJaA9DCK/RcqCH2t+/lIaUUpRoFUsyaBZHQJztwH0K7Zp1fZQoaAZoCWgPQwjqWnufqsLrv5SGlFKUaBVLMmgWR0Cc7VzmfXf7dX2UKGgGaAloD0MI/3qFBfcD4b+UhpRSlGgVSzJoFkdAnOziq6vq1XV9lChoBmgJaA9DCKvLKQExaQDAlIaUUpRoFUsyaBZHQJzsfgKnei11fZQoaAZoCWgPQwjwv5Xs2Ej9v5SGlFKUaBVLMmgWR0Cc71Y3vQWvdX2UKGgGaAloD0MISu1FtB0T8L+UhpRSlGgVSzJoFkdAnO7yoOx0MnV9lChoBmgJaA9DCD230JUIVPO/lIaUUpRoFUsyaBZHQJzueWzF+/h1fZQoaAZoCWgPQwg3wqIiTgcAwJSGlFKUaBVLMmgWR0Cc7hTEBKcvdX2UKGgGaAloD0MIOzYC8bp++r+UhpRSlGgVSzJoFkdAnPDH05EMLHV9lChoBmgJaA9DCL9IaMu5VPG/lIaUUpRoFUsyaBZHQJzwZDzAeq91fZQoaAZoCWgPQwgAOPbsuYz7v5SGlFKUaBVLMmgWR0Cc7+sImgJ1dX2UKGgGaAloD0MIeCgK9ImcAsCUhpRSlGgVSzJoFkdAnO+GX9itrHV9lChoBmgJaA9DCNtugm+avuW/lIaUUpRoFUsyaBZHQJzyTPD50r91fZQoaAZoCWgPQwiOzCN/MHDsv5SGlFKUaBVLMmgWR0Cc8elaKUFCdX2UKGgGaAloD0MIuOUjKemh8b+UhpRSlGgVSzJoFkdAnPFwJkXk53V9lChoBmgJaA9DCPqXpDLFXPC/lIaUUpRoFUsyaBZHQJzxC32EkB11fZQoaAZoCWgPQwj+gAcGEL7jv5SGlFKUaBVLMmgWR0Cc9ARdhRZVdX2UKGgGaAloD0MIoIhFDDtsAcCUhpRSlGgVSzJoFkdAnPOgxrSE13V9lChoBmgJaA9DCIxl+iXiLem/lIaUUpRoFUsyaBZHQJzzJovi97F1fZQoaAZoCWgPQwjF46JaRJT0v5SGlFKUaBVLMmgWR0Cc8sHjIaLodX2UKGgGaAloD0MILlVpi2u8/L+UhpRSlGgVSzJoFkdAnPW2p2ll9XV9lChoBmgJaA9DCOdtbHak+gfAlIaUUpRoFUsyaBZHQJz1UxDb8FZ1fZQoaAZoCWgPQwjhfOpYpXTvv5SGlFKUaBVLMmgWR0Cc9NjVx0dSdX2UKGgGaAloD0MIXOUJhJ3i87+UhpRSlGgVSzJoFkdAnPR0LQXyiHV9lChoBmgJaA9DCD4+ITtvowLAlIaUUpRoFUsyaBZHQJz3ZNRFZxJ1fZQoaAZoCWgPQwhd4sgDkSUAwJSGlFKUaBVLMmgWR0Cc9wE9Mbm2dX2UKGgGaAloD0MIbojxmle18r+UhpRSlGgVSzJoFkdAnPaHAmAskXV9lChoBmgJaA9DCJijx+9tevu/lIaUUpRoFUsyaBZHQJz2I2CNCJJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cpu", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.278969881962985, "std_reward": 0.5296601349239134, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T14:46:12.600756"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf4f7b872ba90fc977c8096b8e57936518f5fd646032515d14fa7e3cb0ec0212
|
3 |
+
size 2440
|