Update README.md
Browse files
README.md
CHANGED
@@ -1,26 +1,62 @@
|
|
1 |
-
|
2 |
---
|
3 |
tags:
|
4 |
- autotrain
|
5 |
- text-classification
|
6 |
base_model: sentence-transformers/all-mpnet-base-v2
|
7 |
widget:
|
8 |
-
- text:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- autotrain
|
4 |
- text-classification
|
5 |
base_model: sentence-transformers/all-mpnet-base-v2
|
6 |
widget:
|
7 |
+
- text: I love AutoTrain
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
pipeline_tag: text-classification
|
11 |
+
---
|
12 |
+
|
13 |
+
# Clickbait Detection Model
|
14 |
+
|
15 |
+
This is a **custom-trained text classification model** created using Hugging Face **AutoTrain**. The model is designed to classify text into two categories:
|
16 |
+
- **Clickbait**
|
17 |
+
- **Not Clickbait**
|
18 |
+
|
19 |
+
The training was conducted using a fine-tuned version of the `sentence-transformers/all-mpnet-base-v2` base model, which is well-suited for text classification tasks.
|
20 |
+
|
21 |
---
|
22 |
|
23 |
+
## Model Details
|
24 |
+
|
25 |
+
- **Base Model**: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
26 |
+
- **Problem Type**: Text Classification
|
27 |
+
- **Language**: English (`en`)
|
28 |
+
- **Pipeline Tag**: text-classification
|
29 |
+
- **Tags**: autotrain, text-classification
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
You can use this model with Hugging Face’s `transformers` library to classify text into `clickbait` or `not clickbait`.
|
36 |
|
37 |
+
### Example Code
|
38 |
+
```python
|
39 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
40 |
|
41 |
+
# Load tokenizer and model
|
42 |
+
model_name = "Milan97/autotrain-9ikup-ih7yd"
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
45 |
|
46 |
+
# Input text
|
47 |
+
text = "You won’t believe what happened next!"
|
48 |
|
49 |
+
# Tokenize and perform inference
|
50 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
51 |
+
outputs = model(**inputs)
|
52 |
|
53 |
+
# Get predicted label and confidence
|
54 |
+
logits = outputs.logits
|
55 |
+
predicted_class = logits.argmax(dim=1).item()
|
56 |
+
confidence = logits.softmax(dim=1).max().item()
|
57 |
|
58 |
+
# Label mapping
|
59 |
+
labels = {0: "Not Clickbait", 1: "Clickbait"}
|
60 |
|
61 |
+
print(f"Text: {text}")
|
62 |
+
print(f"Prediction: {labels[predicted_class]} (Confidence: {confidence:.2f})")
|