File size: 23,787 Bytes
aec7bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
{
"cells": [
{
"cell_type": "markdown",
"id": "b89da7e6-431a-4659-a5b3-45323d11fd03",
"metadata": {},
"source": [
"# Pipelines for NLP Tasks"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "76d9d1e3-05e1-456d-b564-5d096896a778",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/milindchawre/.pyenv/versions/3.12.2/envs/hugging-face/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import transformers\n",
"from transformers import pipeline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cf038c7c-13ce-4231-8acb-2a6b8de67de6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.44.0\n"
]
}
],
"source": [
"print(transformers.__version__)"
]
},
{
"cell_type": "markdown",
"id": "1dbc51c2-1efd-4811-929a-54ef8424c30c",
"metadata": {},
"source": [
"## Loading Tasks\n",
"\n",
"The task defining which pipeline will be returned. Currently accepted tasks are:\n",
" \n",
" - `\"audio-classification\"`: will return a [`AudioClassificationPipeline`].\n",
" - `\"automatic-speech-recognition\"`: will return a [`AutomaticSpeechRecognitionPipeline`].\n",
" - `\"conversational\"`: will return a [`ConversationalPipeline`].\n",
" - `\"depth-estimation\"`: will return a [`DepthEstimationPipeline`].\n",
" - `\"document-question-answering\"`: will return a [`DocumentQuestionAnsweringPipeline`].\n",
" - `\"feature-extraction\"`: will return a [`FeatureExtractionPipeline`].\n",
" - `\"fill-mask\"`: will return a [`FillMaskPipeline`]:.\n",
" - `\"image-classification\"`: will return a [`ImageClassificationPipeline`].\n",
" - `\"image-segmentation\"`: will return a [`ImageSegmentationPipeline`].\n",
" - `\"image-to-text\"`: will return a [`ImageToTextPipeline`].\n",
" - `\"object-detection\"`: will return a [`ObjectDetectionPipeline`].\n",
" - `\"question-answering\"`: will return a [`QuestionAnsweringPipeline`].\n",
" - `\"summarization\"`: will return a [`SummarizationPipeline`].\n",
" - `\"table-question-answering\"`: will return a [`TableQuestionAnsweringPipeline`].\n",
" - `\"text2text-generation\"`: will return a [`Text2TextGenerationPipeline`].\n",
" - `\"text-classification\"` (alias `\"sentiment-analysis\"` available): will return a\n",
" [`TextClassificationPipeline`].\n",
" - `\"text-generation\"`: will return a [`TextGenerationPipeline`]:.\n",
" - `\"token-classification\"` (alias `\"ner\"` available): will return a [`TokenClassificationPipeline`].\n",
" - `\"translation\"`: will return a [`TranslationPipeline`].\n",
" - `\"translation_xx_to_yy\"`: will return a [`TranslationPipeline`].\n",
" - `\"video-classification\"`: will return a [`VideoClassificationPipeline`].\n",
" - `\"visual-question-answering\"`: will return a [`VisualQuestionAnsweringPipeline`].\n",
" - `\"zero-shot-classification\"`: will return a [`ZeroShotClassificationPipeline`].\n",
" - `\"zero-shot-image-classification\"`: will return a [`ZeroShotImageClassificationPipeline`].\n",
" - `\"zero-shot-object-detection\"`: will return a [`ZeroShotObjectDetectionPipeline`]."
]
},
{
"cell_type": "markdown",
"id": "aaa893bc-026c-456a-99f0-8f56a47da96e",
"metadata": {
"tags": []
},
"source": [
"## Classification \n",
"\n",
"### Default Models"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c3498239-01f0-49b1-bf3e-d9cba22d41ac",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision af0f99b (https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"/Users/milindchawre/.pyenv/versions/3.12.2/envs/hugging-face/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 0.9998236298561096}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe = pipeline(task=\"text-classification\",device=0)\n",
"pipe(\"This restaurant is ok\")"
]
},
{
"cell_type": "markdown",
"id": "e88492a4-003a-4387-9590-0f3f621278ba",
"metadata": {},
"source": [
"### Specific Models\n",
"\n",
"Perhaps you want to use a different model for different categories or text types, for example, financial news: https://huggingface.co/ProsusAI/finbert\n",
"\n",
"You can explore more details in the paper: https://arxiv.org/pdf/1908.10063"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "bcf0966e-892f-46ca-9321-c0b31c9862ab",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
}
],
"source": [
"pipe = pipeline(model=\"ProsusAI/finbert\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fdf85b86-1132-4ef7-80c8-36e729be2910",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'label': 'positive', 'score': 0.9350943565368652}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe(\"Shares of food delivery companies surged despite the catastrophic impact of coronavirus on global markets.\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6eca0d8e-1d32-4801-945a-34e9e7bbf83d",
"metadata": {},
"outputs": [],
"source": [
"tweets = ['Gonna buy AAPL, its about to surge up!',\n",
" 'Gotta sell AAPL, its gonna plummet!']"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bfc8d3e1-d7d4-457f-a61c-25c023f4851a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'label': 'positive', 'score': 0.523411750793457},\n",
" {'label': 'neutral', 'score': 0.5528597831726074}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe(tweets)"
]
},
{
"cell_type": "markdown",
"id": "d2e8be7b-2cb7-425d-ae25-fa0b57f67f6a",
"metadata": {},
"source": [
"# Named Entity Recognition\n",
"\n",
"Let's explore another NLP task, such as NER - Named Entity Recognition\n",
"\n",
"**Note, this is a much larger model! If you run this it will download about 1.5 GB on to your computer inside of a cache folder!**"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1486daa6-6108-4179-8fd3-682c17ad8f56",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision af0f99b (https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
}
],
"source": [
"pipe = pipeline(task=\"text-classification\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "293aa275-9fde-4017-9345-ce7a4debf315",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and revision f2482bf (https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"Some weights of the model checkpoint at dbmdz/bert-large-cased-finetuned-conll03-english were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']\n",
"- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
}
],
"source": [
"ner_tag_pipe = pipeline('ner')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "cbaaa69a-9dab-42a3-a1f5-1b109251c8c6",
"metadata": {},
"outputs": [],
"source": [
"result = ner_tag_pipe(\"After working at Tesla I started to study Nikola Tesla a lot more, especially at university in the USA.\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "88e7d85a-6811-47a5-b400-2b36eb32e87e",
"metadata": {},
"outputs": [],
"source": [
"#sentence =\"\"\"After working at Tomtom I started to study AI a lot more, especially at home in the Mumbai, Topics like RAG, hugging face and data science interest me more, Eating food like snacks and packed food with my laptop is my working setup.\"\"\"\n",
"#result = ner_tag_pipe(sentence)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "1be4c2c4-c1ae-446a-9ce3-680934e7da9c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'entity': 'I-ORG',\n",
" 'score': 0.9137765,\n",
" 'index': 4,\n",
" 'word': 'Te',\n",
" 'start': 17,\n",
" 'end': 19},\n",
" {'entity': 'I-ORG',\n",
" 'score': 0.3789888,\n",
" 'index': 5,\n",
" 'word': '##sla',\n",
" 'start': 19,\n",
" 'end': 22},\n",
" {'entity': 'I-PER',\n",
" 'score': 0.99693346,\n",
" 'index': 10,\n",
" 'word': 'Nikola',\n",
" 'start': 42,\n",
" 'end': 48},\n",
" {'entity': 'I-PER',\n",
" 'score': 0.9901416,\n",
" 'index': 11,\n",
" 'word': 'Te',\n",
" 'start': 49,\n",
" 'end': 51},\n",
" {'entity': 'I-PER',\n",
" 'score': 0.8931826,\n",
" 'index': 12,\n",
" 'word': '##sla',\n",
" 'start': 51,\n",
" 'end': 54},\n",
" {'entity': 'I-LOC',\n",
" 'score': 0.9997478,\n",
" 'index': 22,\n",
" 'word': 'USA',\n",
" 'start': 99,\n",
" 'end': 102}]"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "markdown",
"id": "88b446e2-8b25-4736-932b-4a7570c2570b",
"metadata": {},
"source": [
"# Question Answering"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "2ab7745a-1fe3-4e5d-89cf-8399185acd9d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to distilbert/distilbert-base-cased-distilled-squad and revision 626af31 (https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
]
}
],
"source": [
"qa_bot = pipeline('question-answering')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "4380b8e5-4807-48da-bd3e-65e78c42e967",
"metadata": {},
"outputs": [],
"source": [
"text = \"\"\"\n",
"D-Day, marked on June 6, 1944, stands as one of the most significant military operations in history, \n",
"initiating the Allied invasion of Nazi-occupied Europe during World War II. Known as Operation Overlord, \n",
"this massive amphibious assault involved nearly 160,000 Allied troops landing on the beaches of Normandy, \n",
"France, across five sectors: Utah, Omaha, Gold, Juno, and Sword. Supported by over 5,000 ships and 13,000 \n",
"aircraft, the operation was preceded by extensive aerial and naval bombardment and an airborne assault. \n",
"The invasion set the stage for the liberation of Western Europe from Nazi control, despite the heavy \n",
"casualties and formidable German defenses. This day not only demonstrated the logistical prowess \n",
"and courage of the Allied forces but also marked a turning point in the war, leading to the eventual \n",
"defeat of Nazi Germany.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "c185e089-0966-44b6-b4d8-882faf504e3c",
"metadata": {},
"outputs": [],
"source": [
"question = \"What were the five beach sectors on D-Day?\"\n",
"\n",
"result = qa_bot(question=question,context=text)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "720fcd66-2e85-4034-a81a-f49901d2fbb7",
"metadata": {},
"outputs": [],
"source": [
"#\n",
"#question = \"Who is sherlock holmes?\"\n",
"#result = qa_bot(question=question,context=text)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "8d1918a0-70f3-4d6c-8a17-bac0d07a9761",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.9430821537971497,\n",
" 'start': 345,\n",
" 'end': 379,\n",
" 'answer': 'Utah, Omaha, Gold, Juno, and Sword'}"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "markdown",
"id": "f536e540-4080-4135-84e8-86fe13dc2fe6",
"metadata": {},
"source": [
"## Translations\n",
"\n",
"Translates from one language to another.\n",
"\n",
"This translation pipeline can currently be loaded from pipeline() using the following task identifier: \"translation_xx_to_yy\".\n",
"\n",
"The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on www.huggingface.co/models. \n",
"\n",
"Note: You would typically call a specific model for translations: https://huggingface.co/models?pipeline_tag=translation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "24f282e5-1f0e-44ca-9b92-22b211208274",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No model was supplied, defaulted to t5-base and revision 686f1db (https://huggingface.co/t5-base).\n",
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "453587fb51494963bf1c3ba521c405f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"config.json: 0%| | 0.00/1.21k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Marcial\\AppData\\Roaming\\Python\\Python39\\site-packages\\huggingface_hub\\file_download.py:148: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\Marcial\\.cache\\huggingface\\hub\\models--t5-base. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e099a45ebcfa45c48dfecbcfb3eec137",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"pytorch_model.bin: 0%| | 0.00/892M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6607a675437748f586b034cbcbebd046",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"generation_config.json: 0%| | 0.00/147 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eeaea7f972ce4f968a30bcf0c8cf7a30",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"spiece.model: 0%| | 0.00/792k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21b2cfc97ada4a41bb3cefb2e2b95170",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer.json: 0%| | 0.00/1.39M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Marcial\\AppData\\Roaming\\Python\\Python39\\site-packages\\transformers\\models\\t5\\tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
"- Be aware that you SHOULD NOT rely on t5-base automatically truncating your input to 512 when padding/encoding.\n",
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from transformers import pipeline\n",
"translate = pipeline('translation_en_to_fr')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "88c1074c-d1c2-4957-9a32-bb0275b9a3c2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Marcial\\AppData\\Roaming\\Python\\Python39\\site-packages\\transformers\\generation\\utils.py:1186: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation)\n",
" warnings.warn(\n"
]
}
],
"source": [
"result = translate(\"Hello, my name is Jose. What is your name?\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f57e175b-c6e3-4645-941d-2d415295ff14",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'translation_text': 'Bonjour, mon nom est Jose, quel est votre nom ?'}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "619c77f5-9eda-47a0-b721-2bf4efa9cec5",
"metadata": {},
"outputs": [],
"source": [
"result = translate(\"Hello, my name is Jose.\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "10eea677-5ac7-477f-a67e-8f36c31e2acb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'translation_text': 'Bonjour, mon nom est Jose.'}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "fb287c23-f3e2-47e9-b92c-a0714937e0cf",
"metadata": {},
"outputs": [],
"source": [
"result = translate(\"Hello, I am called Jose.\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ca2a23c2-eed8-45ef-9d96-208dc2370b34",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'translation_text': \"Bonjour, je m'appelle Jose.\"}]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b6b3d58-694b-4a0e-808d-84be7d5745ff",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|