Minami-su commited on
Commit
3ce0b08
1 Parent(s): f685aa8

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: qwen
4
+ license_link: >-
5
+ https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
6
+ language:
7
+ - en
8
+ - zh
9
+ library_name: transformers
10
+ pipeline_tag: text-generation
11
+ inference: false
12
+ tags:
13
+ - mistral
14
+ - qwen
15
+ - qwen1.5
16
+ - qwen2
17
+ ---
18
+ This is the Mistral version of [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) model by Alibaba Cloud.
19
+ The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py).
20
+ I have made modifications to make it compatible with qwen1.5.
21
+ This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/mistral_qwen2.py
22
+
23
+ ## special
24
+
25
+ 1.Before using this model, you need to modify modeling_mistral.py in transformers library
26
+
27
+ 2.vim /root/anaconda3/envs/train/lib/python3.9/site-packages/transformers/models/mistral/modeling_mistral.py
28
+
29
+ 3.find MistralAttention,
30
+
31
+ 4.modify q,k,v,o bias=False ----->, bias=config.attention_bias
32
+
33
+ Before:
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/AKj_fwEoLUKWZ4mViYW-q.png)
35
+ After:
36
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/A2gSwq9l6Zx8X1qegtgvE.png)
37
+
38
+
39
+ ## Differences between qwen2 mistral and qwen2 llamafy
40
+
41
+ Compared to qwen2 llamafy,qwen2 mistral can use sliding window attention,qwen2 mistral is faster than qwen2 llamafy, and the context length is better
42
+
43
+
44
+ Usage:
45
+
46
+ ```python
47
+
48
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
49
+ tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen1.5-7B-Chat_mistral")
50
+ model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen1.5-7B-Chat_mistral", torch_dtype="auto", device_map="auto")
51
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
52
+
53
+ messages = [
54
+ {"role": "user", "content": "Who are you?"}
55
+ ]
56
+ inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
57
+ inputs = inputs.to("cuda")
58
+ generate_ids = model.generate(inputs,max_length=32768, streamer=streamer)
59
+
60
+ ```
61
+
62
+ ## Test
63
+ load in 4bit
64
+ ```
65
+ hf-causal (pretrained=Qwen1.5-7B-Chat), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
66
+ | Task |Version| Metric |Value | |Stderr|
67
+ |-------------|------:|--------|-----:|---|-----:|
68
+ |arc_challenge| 0|acc |0.4155|± |0.0144|
69
+ | | |acc_norm|0.4480|± |0.0145|
70
+ |truthfulqa_mc| 1|mc1 |0.3513|± |0.0167|
71
+ | | |mc2 |0.5165|± |0.0159|
72
+ |winogrande | 0|acc |0.6330|± |0.0135|
73
+ ```
74
+ load in 4bit
75
+ ```
76
+ hf-causal (pretrained=Qwen1.5-7B-Chat_mistral), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16
77
+ | Task |Version| Metric |Value | |Stderr|
78
+ |-------------|------:|--------|-----:|---|-----:|
79
+ |arc_challenge| 0|acc |0.4172|± |0.0144|
80
+ | | |acc_norm|0.4480|± |0.0145|
81
+ |truthfulqa_mc| 1|mc1 |0.3488|± |0.0167|
82
+ | | |mc2 |0.5161|± |0.0159|
83
+ |winogrande | 0|acc |0.6306|± |0.0136|
84
+ ```
85
+ ```