--- base_model: Minbyul/selfbiorag-7b-wo-kqa_silver_wogold-sft tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: selfbiorag-7b-dpo-full-sft-wo-kqa_silver_wogold results: [] --- # selfbiorag-7b-dpo-full-sft-wo-kqa_silver_wogold This model is a fine-tuned version of [Minbyul/selfbiorag-7b-wo-kqa_silver_wogold-sft](https://huggingface.co/Minbyul/selfbiorag-7b-wo-kqa_silver_wogold-sft) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.3027 - Rewards/chosen: -1.2987 - Rewards/rejected: -5.2535 - Rewards/accuracies: 0.8697 - Rewards/margins: 3.9549 - Logps/rejected: -1323.0533 - Logps/chosen: -663.1464 - Logits/rejected: -0.3508 - Logits/chosen: -0.2498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2357 | 0.35 | 100 | 0.3364 | -0.8114 | -3.4524 | 0.8579 | 2.6410 | -1142.9419 | -614.4251 | -0.0367 | 0.0065 | | 0.154 | 0.71 | 200 | 0.3009 | -0.9868 | -4.1905 | 0.8632 | 3.2037 | -1216.7521 | -631.9589 | -0.3156 | -0.2396 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2