qingjun commited on
Commit
4e7757c
·
1 Parent(s): d6b8678

Initial Commit

Browse files
config.json ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiniMaxText01ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "attn_type_list": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0,
11
+ 0,
12
+ 0,
13
+ 0,
14
+ 1,
15
+ 0,
16
+ 0,
17
+ 0,
18
+ 0,
19
+ 0,
20
+ 0,
21
+ 0,
22
+ 1,
23
+ 0,
24
+ 0,
25
+ 0,
26
+ 0,
27
+ 0,
28
+ 0,
29
+ 0,
30
+ 1,
31
+ 0,
32
+ 0,
33
+ 0,
34
+ 0,
35
+ 0,
36
+ 0,
37
+ 0,
38
+ 1,
39
+ 0,
40
+ 0,
41
+ 0,
42
+ 0,
43
+ 0,
44
+ 0,
45
+ 0,
46
+ 1,
47
+ 0,
48
+ 0,
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0,
53
+ 0,
54
+ 1,
55
+ 0,
56
+ 0,
57
+ 0,
58
+ 0,
59
+ 0,
60
+ 0,
61
+ 0,
62
+ 1,
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0,
67
+ 0,
68
+ 0,
69
+ 0,
70
+ 1,
71
+ 0,
72
+ 0,
73
+ 0,
74
+ 0,
75
+ 0,
76
+ 0,
77
+ 0,
78
+ 1,
79
+ 0,
80
+ 0,
81
+ 0,
82
+ 0,
83
+ 0,
84
+ 0,
85
+ 0,
86
+ 1
87
+ ],
88
+ "auto_map": {
89
+ "AutoConfig": "configuration_minimax_text_01.MiniMaxText01Config",
90
+ "AutoModelForCausalLM": "modeling_minimax_text_01.MiniMaxText01ForCausalLM"
91
+ },
92
+ "bos_token_id": null,
93
+ "eos_token_id": null,
94
+ "head_dim": 128,
95
+ "hidden_act": "silu",
96
+ "hidden_size": 6144,
97
+ "initializer_range": 0.02,
98
+ "intermediate_size": 9216,
99
+ "layernorm_full_attention_alpha": 3.5565588200778455,
100
+ "layernorm_full_attention_beta": 1.0,
101
+ "layernorm_linear_attention_alpha": 3.5565588200778455,
102
+ "layernorm_linear_attention_beta": 1.0,
103
+ "layernorm_mlp_alpha": 3.5565588200778455,
104
+ "layernorm_mlp_beta": 1.0,
105
+ "max_position_embeddings": 10240000,
106
+ "model_type": "minimax_text_01",
107
+ "num_attention_heads": 64,
108
+ "num_experts_per_tok": 2,
109
+ "num_hidden_layers": 80,
110
+ "num_key_value_heads": 8,
111
+ "num_local_experts": 32,
112
+ "output_router_logits": false,
113
+ "postnorm": true,
114
+ "rms_norm_eps": 1e-05,
115
+ "rope_theta": 10000000,
116
+ "rotary_dim": 64,
117
+ "router_aux_loss_coef": 0.001,
118
+ "router_jitter_noise": 0.0,
119
+ "shared_intermediate_size": 0,
120
+ "shared_moe_mode": "sigmoid",
121
+ "sliding_window": null,
122
+ "tie_word_embeddings": false,
123
+ "transformers_version": "4.45.2",
124
+ "use_cache": true,
125
+ "vocab_size": 200064
126
+ }
configuration_minimax_text_01.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ MiniMaxText01 model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class MiniMaxText01Config(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`MiniMaxText01Model`]. It is used to instantiate an
13
+ MiniMaxText01 model according to the specified arguments, defining the model architecture. Instantiating a configuration
14
+ with the defaults will yield a similar configuration to that of the MiniMaxText01.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
17
+ documentation from [`PretrainedConfig`] for more information.
18
+
19
+
20
+ Args:
21
+ vocab_size (`int`, *optional*, defaults to 32000):
22
+ Vocabulary size of the MiniMaxText01 model. Defines the number of different tokens that can be represented by the
23
+ `inputs_ids` passed when calling [`MiniMaxText01Model`]
24
+ hidden_size (`int`, *optional*, defaults to 4096):
25
+ Dimension of the hidden representations.
26
+ intermediate_size (`int`, *optional*, defaults to 14336):
27
+ Dimension of the MLP representations.
28
+ num_hidden_layers (`int`, *optional*, defaults to 32):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ num_key_value_heads (`int`, *optional*, defaults to 8):
33
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
34
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
35
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
36
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
37
+ by meanpooling all the original heads within that group. For more details checkout [this
38
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
39
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
40
+ The non-linear activation function (function or string) in the decoder.
41
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
42
+ The maximum sequence length that this model might ever be used with. MiniMaxText01's sliding window attention
43
+ allows sequence of up to 4096*32 tokens.
44
+ initializer_range (`float`, *optional*, defaults to 0.02):
45
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
46
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
47
+ The epsilon used by the rms normalization layers.
48
+ use_cache (`bool`, *optional*, defaults to `True`):
49
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
50
+ relevant if `config.is_decoder=True`.
51
+ pad_token_id (`int`, *optional*):
52
+ The id of the padding token.
53
+ bos_token_id (`int`, *optional*, defaults to 1):
54
+ The id of the "beginning-of-sequence" token.
55
+ eos_token_id (`int`, *optional*, defaults to 2):
56
+ The id of the "end-of-sequence" token.
57
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
58
+ Whether the model's input and output word embeddings should be tied.
59
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
60
+ The base period of the RoPE embeddings.
61
+ sliding_window (`int`, *optional*):
62
+ Sliding window attention window size. If not specified, will default to `4096`.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the attention probabilities.
65
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
66
+ The number of experts to route per-token, can be also interpreted as the `top-k` routing
67
+ parameter
68
+ num_local_experts (`int`, *optional*, defaults to 8):
69
+ Number of experts per Sparse MLP layer.
70
+ output_router_logits (`bool`, *optional*, defaults to `False`):
71
+ Whether or not the router logits should be returned by the model. Enabeling this will also
72
+ allow the model to output the auxiliary loss. See [here]() for more details
73
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
74
+ The aux loss factor for the total loss.
75
+ router_jitter_noise (`float`, *optional*, defaults to 0.0):
76
+ Amount of noise to add to the router.
77
+
78
+ ```python
79
+ >>> from transformers import MiniMaxText01Model, MiniMaxText01Config
80
+
81
+ >>> # Initializing a MiniMaxText01 style configuration
82
+ >>> configuration = MiniMaxText01Config()
83
+
84
+ >>> # Initializing a model from the MiniMaxText01 style configuration
85
+ >>> model = MiniMaxText01Model(configuration)
86
+
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+ ```"""
90
+
91
+ model_type = "MiniMaxText01"
92
+ keys_to_ignore_at_inference = ["past_key_values"]
93
+
94
+ def __init__(
95
+ self,
96
+ vocab_size=32000,
97
+ hidden_size=4096,
98
+ intermediate_size=14336,
99
+ num_hidden_layers=32,
100
+ num_attention_heads=32,
101
+ num_key_value_heads=8,
102
+ hidden_act="silu",
103
+ max_position_embeddings=4096 * 32,
104
+ initializer_range=0.02,
105
+ rms_norm_eps=1e-5,
106
+ use_cache=True,
107
+ pad_token_id=None,
108
+ bos_token_id=None,
109
+ eos_token_id=None,
110
+ tie_word_embeddings=False,
111
+ rope_theta=1e6,
112
+ sliding_window=None,
113
+ attention_dropout=0.0,
114
+ num_experts_per_tok=2,
115
+ num_local_experts=8,
116
+ output_router_logits=False,
117
+ router_aux_loss_coef=0.001,
118
+ router_jitter_noise=0.0,
119
+ **kwargs,
120
+ ):
121
+ self.vocab_size = vocab_size
122
+ self.max_position_embeddings = max_position_embeddings
123
+ self.hidden_size = hidden_size
124
+ self.intermediate_size = intermediate_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.sliding_window = sliding_window
128
+
129
+ # for backward compatibility
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+
133
+ self.num_key_value_heads = num_key_value_heads
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.use_cache = use_cache
138
+ self.rope_theta = rope_theta
139
+ self.attention_dropout = attention_dropout
140
+
141
+ self.num_experts_per_tok = num_experts_per_tok
142
+ self.num_local_experts = num_local_experts
143
+ self.output_router_logits = output_router_logits
144
+ self.router_aux_loss_coef = router_aux_loss_coef
145
+ self.router_jitter_noise = router_jitter_noise
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
main.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig
2
+ import torch
3
+ import argparse
4
+
5
+ """
6
+ usage:
7
+ export SAFETENSORS_FAST_GPU=1
8
+ python main.py --quant_type int8 --world_size 8 --model_id <model_path>
9
+ """
10
+
11
+ def generate_quanto_config(hf_config: AutoConfig, quant_type: str):
12
+ QUANT_TYPE_MAP = {
13
+ "default": None,
14
+ "int8": QuantoConfig(
15
+ weights="int8",
16
+ modules_to_not_convert=[
17
+ "lm_head",
18
+ "embed_tokens",
19
+ ] + [f"model.layers.{i}.coefficient" for i in range(hf_config.num_hidden_layers)]
20
+ + [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.num_hidden_layers)]
21
+ ),
22
+ }
23
+ return QUANT_TYPE_MAP[quant_type]
24
+
25
+
26
+ def parse_args():
27
+ parser = argparse.ArgumentParser()
28
+ parser.add_argument("--quant_type", type=str, default="default", choices=["default", "int8"])
29
+ parser.add_argument("--model_id", type=str, required=True)
30
+ parser.add_argument("--world_size", type=int, required=True)
31
+ return parser.parse_args()
32
+
33
+
34
+ def check_params(args, hf_config: AutoConfig):
35
+ if args.quant_type == "int8":
36
+ assert args.world_size >= 8, "int8 weight-only quantization requires at least 8 GPUs"
37
+
38
+ assert hf_config.num_hidden_layers % args.world_size == 0, f"num_hidden_layers({hf_config.num_hidden_layers}) must be divisible by world_size({args.world_size})"
39
+
40
+
41
+ @torch.no_grad()
42
+ def main():
43
+ args = parse_args()
44
+ print("\n=============== Argument ===============")
45
+ for key in vars(args):
46
+ print(f"{key}: {vars(args)[key]}")
47
+ print("========================================")
48
+
49
+ model_id = args.model_id
50
+
51
+ hf_config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
52
+ check_params(args, hf_config)
53
+ quantization_config = generate_quanto_config(hf_config, args.quant_type)
54
+
55
+ device_map = {
56
+ 'model.embed_tokens': 'cuda:0',
57
+ 'model.norm': f'cuda:{args.world_size - 1}',
58
+ 'lm_head': f'cuda:{args.world_size - 1}'
59
+ }
60
+ layers_per_device = hf_config.num_hidden_layers // args.world_size
61
+ for i in range(args.world_size):
62
+ for j in range(layers_per_device):
63
+ device_map[f'model.layers.{i * layers_per_device + j}'] = f'cuda:{i}'
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
66
+ prompt = "Hello!"
67
+ messages = [
68
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
69
+ {"role": "user", "content": [{"type": "text", "text": prompt}]},
70
+ ]
71
+ text = tokenizer.apply_chat_template(
72
+ messages,
73
+ tokenize=False,
74
+ add_generation_prompt=True
75
+ )
76
+ model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
77
+ quantized_model = AutoModelForCausalLM.from_pretrained(
78
+ model_id,
79
+ torch_dtype="bfloat16",
80
+ device_map=device_map,
81
+ quantization_config=quantization_config,
82
+ trust_remote_code=True,
83
+ offload_buffers=True,
84
+ )
85
+ generation_config = GenerationConfig(
86
+ max_new_tokens=20,
87
+ eos_token_id=200020,
88
+ use_cache=True,
89
+ )
90
+ generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
91
+ print(f"generated_ids: {generated_ids}")
92
+ generated_ids = [
93
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
94
+ ]
95
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
96
+ print(response)
97
+
98
+ if __name__ == "__main__":
99
+ main()
100
+
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_minimax_text_01.py ADDED
@@ -0,0 +1,1701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch MiniMaxText01 model."""
2
+ import inspect
3
+ import math
4
+ import warnings
5
+ from typing import List, Optional, Tuple, Union
6
+ import os
7
+ import copy
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
13
+ from einops import rearrange, repeat
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache, DynamicCache
16
+ from transformers.modeling_attn_mask_utils import (
17
+ _prepare_4d_causal_attention_mask,
18
+ )
19
+ from transformers.modeling_outputs import (
20
+ MoeCausalLMOutputWithPast,
21
+ MoeModelOutputWithPast,
22
+ SequenceClassifierOutputWithPast,
23
+ )
24
+ from transformers.modeling_utils import PreTrainedModel
25
+ from transformers.utils import (
26
+ add_start_docstrings,
27
+ add_start_docstrings_to_model_forward,
28
+ is_flash_attn_2_available,
29
+ is_flash_attn_greater_or_equal_2_10,
30
+ logging,
31
+ replace_return_docstrings,
32
+ )
33
+ from transformers.utils.import_utils import is_torch_fx_available
34
+ from .configuration_minimax_text_01 import MiniMaxText01Config
35
+
36
+ if is_flash_attn_2_available():
37
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
38
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
39
+
40
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
41
+
42
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
43
+ # It means that the function will not be traced through and simply appear as a node in the graph.
44
+ if is_torch_fx_available():
45
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
46
+
47
+ use_triton = eval(os.environ.get("use_triton", default="False"))
48
+ debug = eval(os.environ.get("debug", default="False"))
49
+ do_eval = eval(os.environ.get("do_eval", default="False"))
50
+ eval_and_not_generate = eval(os.environ.get("eval_and_not_generate", default="False"))
51
+ BLOCK = 256
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CONFIG_FOR_DOC = "MiniMaxText01Config"
56
+
57
+
58
+ def get_activation_fn(activation):
59
+ if debug:
60
+ logger.info(f"activation: {activation}")
61
+ if activation == "gelu":
62
+ return F.gelu
63
+ elif activation == "relu":
64
+ return F.relu
65
+ elif activation == "elu":
66
+ return F.elu
67
+ elif activation == "sigmoid":
68
+ return F.sigmoid
69
+ elif activation == "exp":
70
+
71
+ def f(x):
72
+ with torch.no_grad():
73
+ x_max = torch.max(x, dim=-1, keepdims=True).values
74
+ y = torch.exp(x - x_max)
75
+
76
+ return y
77
+
78
+ return f
79
+ elif activation == "leak":
80
+ return F.leaky_relu
81
+ elif activation == "1+elu":
82
+
83
+ def f(x):
84
+ return 1 + F.elu(x)
85
+
86
+ return f
87
+ elif activation == "2+elu":
88
+
89
+ def f(x):
90
+ return 2 + F.elu(x)
91
+
92
+ return f
93
+ elif activation == "silu" or activation == "swish":
94
+ return F.silu
95
+ elif activation == "sine":
96
+ return torch.sin
97
+ else:
98
+ logger.info(
99
+ f"activation: does not support {activation}, use Identity!!!")
100
+ return lambda x: x
101
+
102
+
103
+ def load_balancing_loss_func(
104
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2,
105
+ attention_mask: Optional[torch.Tensor] = None
106
+ ) -> float:
107
+ r"""
108
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
109
+
110
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
111
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
112
+ experts is too unbalanced.
113
+
114
+ Args:
115
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
116
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
117
+ shape [batch_size X sequence_length, num_experts].
118
+ attention_mask (`torch.Tensor`, None):
119
+ The attention_mask used in forward function
120
+ shape [batch_size X sequence_length] if not None.
121
+ num_experts (`int`, *optional*):
122
+ Number of experts
123
+
124
+ Returns:
125
+ The auxiliary loss.
126
+ """
127
+ if gate_logits is None or not isinstance(gate_logits, tuple):
128
+ return 0
129
+
130
+ if isinstance(gate_logits, tuple):
131
+ compute_device = gate_logits[0].device
132
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
133
+
134
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
135
+
136
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
137
+
138
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
139
+
140
+ if attention_mask is None:
141
+ # Compute the percentage of tokens routed to each experts
142
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
143
+
144
+ # Compute the average probability of routing to these experts
145
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
146
+ else:
147
+ batch_size, sequence_length = attention_mask.shape
148
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
149
+
150
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
151
+ expert_attention_mask = (
152
+ attention_mask[None, :, :, None, None]
153
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
154
+ .reshape(-1, top_k, num_experts)
155
+ .to(compute_device)
156
+ )
157
+
158
+ # Compute the percentage of tokens routed to each experts
159
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
160
+ expert_attention_mask, dim=0
161
+ )
162
+
163
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
164
+ router_per_expert_attention_mask = (
165
+ attention_mask[None, :, :, None]
166
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
167
+ .reshape(-1, num_experts)
168
+ .to(compute_device)
169
+ )
170
+
171
+ # Compute the average probability of routing to these experts
172
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
173
+ router_per_expert_attention_mask, dim=0
174
+ )
175
+
176
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
177
+ return overall_loss * num_experts
178
+
179
+
180
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
181
+ def _get_unpad_data(attention_mask):
182
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
183
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
184
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
185
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
186
+ return (
187
+ indices,
188
+ cu_seqlens,
189
+ max_seqlen_in_batch,
190
+ )
191
+
192
+
193
+ class GLU(nn.Module):
194
+
195
+ def __init__(self, d1, d2, bias=False):
196
+ super().__init__()
197
+
198
+ self.l1 = nn.Linear(d1, d2, bias=bias)
199
+ self.l2 = nn.Linear(d1, d2, bias=bias)
200
+ self.l3 = nn.Linear(d2, d1, bias=bias)
201
+
202
+ def forward(self, x):
203
+ o1 = self.l1(x)
204
+ o2 = self.l2(x)
205
+ output = o1 * o2
206
+ output = self.l3(output)
207
+ return output
208
+
209
+
210
+ class MiniMaxText01LightningAttention(nn.Module):
211
+ def __init__(self, config: MiniMaxText01Config, layer_idx: Optional[int] = None):
212
+ super().__init__()
213
+ bias = False
214
+ self.hidden_size = config.hidden_size
215
+ self.num_heads = config.num_attention_heads
216
+ self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
217
+
218
+ self.out_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=bias)
219
+ self.act = get_activation_fn(config.hidden_act)
220
+ self.norm = MiniMaxText01RMSNorm(self.head_dim * self.num_heads)
221
+
222
+ self.qkv_proj = nn.Linear(self.hidden_size, 3 * self.head_dim * self.num_heads, bias=bias)
223
+ self.output_gate = nn.Linear(self.hidden_size, self.head_dim * self.num_heads, bias=bias)
224
+
225
+ # for inference only
226
+ self.offset = 0
227
+ self.layer_idx = layer_idx
228
+
229
+ def forward(
230
+ self,
231
+ hidden_states,
232
+ attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
233
+ output_attentions: bool = False,
234
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
235
+ use_cache: bool = False,
236
+ slope_rate: Optional[torch.Tensor] = None,
237
+ **kwargs
238
+ ):
239
+ if (not self.training) and (not do_eval):
240
+ return self.inference(
241
+ hidden_states,
242
+ attn_mask,
243
+ output_attentions,
244
+ past_key_value,
245
+ use_cache,
246
+ slope_rate,
247
+ )
248
+
249
+ def inference(
250
+ self,
251
+ x,
252
+ attn_mask: Optional[torch.Tensor] = None, # (b, n)
253
+ output_attentions: bool = False,
254
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
255
+ use_cache: bool = False,
256
+ slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
257
+ ):
258
+ # x: b n d
259
+ b, n, d = x.shape
260
+ # linear map
261
+ qkv = self.act(self.qkv_proj(x))
262
+ new_shape = qkv.size()[:-1] + (self.num_heads, -1)
263
+ qkv = qkv.view(*new_shape)
264
+ q, k, v = torch.split(qkv, [self.head_dim] * 3, dim=3)
265
+ q = q.transpose(1, 2)
266
+ k = k.transpose(1, 2)
267
+ v = v.transpose(1, 2)
268
+
269
+ if past_key_value is None:
270
+ self.offset = q.shape[-2]
271
+ else:
272
+ self.offset += 1
273
+
274
+ # for align with metaseq
275
+ ratio = torch.exp(-slope_rate)
276
+
277
+ # only use for the first time
278
+ if past_key_value is None:
279
+ slope_rate = slope_rate.to(torch.float32)
280
+ if attn_mask is not None:
281
+ v = v.masked_fill((1 - attn_mask).unsqueeze(1).unsqueeze(-1).to(torch.bool), 0)
282
+ NUM_BLOCK = (n + BLOCK - 1) // BLOCK
283
+ b, h, n, d = q.shape
284
+ e = v.shape[-1]
285
+ # other
286
+ array = torch.arange(BLOCK).to(q) + 1
287
+ q_decay = torch.exp(-slope_rate * array.reshape(-1, 1))
288
+ k_decay = torch.exp(-slope_rate * (BLOCK - array.reshape(-1, 1)))
289
+ index = array[:, None] - array[None, :]
290
+ s_index = slope_rate * index[
291
+ None,
292
+ None,
293
+ ]
294
+ s_index = torch.where(index >= 0, -s_index, float("-inf"))
295
+ diag_decay = torch.exp(s_index)
296
+
297
+ kv = torch.zeros(b, h, d, e).to(torch.float32).to(q.device)
298
+ output = torch.empty((b, h, n, e), dtype=q.dtype, device=q.device)
299
+ for i in range(NUM_BLOCK):
300
+ si = i * BLOCK
301
+ ei = min(si + BLOCK, n)
302
+ m = ei - si
303
+ qi = q[:, :, si:ei].contiguous()
304
+ ki = k[:, :, si:ei].contiguous()
305
+ vi = v[:, :, si:ei].contiguous()
306
+ qkv_none_diag = torch.matmul(qi * q_decay[:, :m], kv).to(torch.float32)
307
+
308
+ # diag
309
+ qk = torch.matmul(qi, ki.transpose(-1, -2)).to(torch.float32) * diag_decay[:, :, :m, :m]
310
+ qkv_diag = torch.matmul(qk, vi.to(torch.float32))
311
+ block_decay = torch.exp(-slope_rate * m)
312
+ output[:, :, si:ei] = qkv_none_diag + qkv_diag
313
+ kv = block_decay * kv + torch.matmul((ki * k_decay[:, -m:]).transpose(-1, -2).to(vi.dtype), vi)
314
+
315
+ else:
316
+ kv = past_key_value
317
+ output = []
318
+ for i in range(n):
319
+ kv = ratio * kv + torch.einsum(
320
+ "... n d, ... n e -> ... d e",
321
+ k[:, :, i:i + 1],
322
+ v[:, :, i:i + 1],
323
+ )
324
+ qkv = torch.einsum("... n e, ... e d -> ... n d", q[:, :, i:i + 1], kv.to(q.dtype))
325
+ output.append(qkv)
326
+ output = torch.concat(output, dim=-2)
327
+ # reshape
328
+ output = rearrange(output, "b h n d -> b n (h d)")
329
+ # normalize
330
+ output = self.norm(output)
331
+ # gate
332
+ output = F.sigmoid(self.output_gate(x)) * output
333
+ # outproj
334
+ output = self.out_proj(output)
335
+
336
+ attn_weights = None
337
+
338
+ return output, attn_weights, kv
339
+
340
+
341
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MiniMaxText01
342
+ class MiniMaxText01RMSNorm(nn.Module):
343
+ def __init__(self, hidden_size, eps=1e-6):
344
+ """
345
+ MiniMaxText01RMSNorm is equivalent to T5LayerNorm
346
+ """
347
+ super().__init__()
348
+ self.weight = nn.Parameter(torch.ones(hidden_size))
349
+ self.variance_epsilon = eps
350
+
351
+ def forward(self, hidden_states):
352
+ input_dtype = hidden_states.dtype
353
+ hidden_states = hidden_states.to(torch.float32)
354
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
355
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
356
+ return self.weight * hidden_states.to(input_dtype)
357
+
358
+
359
+ # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->MiniMaxText01
360
+ class MiniMaxText01RotaryEmbedding(nn.Module):
361
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
362
+ super().__init__()
363
+
364
+ self.dim = dim
365
+ self.max_position_embeddings = max_position_embeddings
366
+ self.base = base
367
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
368
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
369
+
370
+ # Build here to make `torch.jit.trace` work.
371
+ self._set_cos_sin_cache(
372
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
373
+ )
374
+
375
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
376
+ self.max_seq_len_cached = seq_len
377
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
378
+
379
+ freqs = torch.outer(t, self.inv_freq)
380
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
381
+ emb = torch.cat((freqs, freqs), dim=-1)
382
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
383
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
384
+
385
+ def forward(self, x, seq_len=None):
386
+ # x: [bs, num_attention_heads, seq_len, head_size]
387
+ if seq_len > self.max_seq_len_cached:
388
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
389
+
390
+ return (
391
+ self.cos_cached[:seq_len].to(dtype=torch.float32),
392
+ self.sin_cached[:seq_len].to(dtype=torch.float32),
393
+ )
394
+
395
+
396
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
397
+ def rotate_half(x):
398
+ """Rotates half the hidden dims of the input."""
399
+ x1 = x[..., : x.shape[-1] // 2]
400
+ x2 = x[..., x.shape[-1] // 2:]
401
+ return torch.cat((-x2, x1), dim=-1)
402
+
403
+
404
+ # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
405
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
406
+ """Applies Rotary Position Embedding to the query and key tensors.
407
+
408
+ Args:
409
+ q (`torch.Tensor`): The query tensor.
410
+ k (`torch.Tensor`): The key tensor.
411
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
412
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
413
+ position_ids (`torch.Tensor`):
414
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
415
+ used to pass offsetted position ids when working with a KV-cache.
416
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
417
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
418
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
419
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
420
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
421
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
422
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
423
+ Returns:
424
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
425
+ """
426
+ dtype = q.dtype
427
+ rot_dim = cos.shape[-1]
428
+ q_, q_pass = q[..., :rot_dim], q[..., rot_dim:]
429
+ k_, k_pass = k[..., :rot_dim], k[..., rot_dim:]
430
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
431
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
432
+ q_embed = (q_ * cos) + (rotate_half(q_) * sin)
433
+ k_embed = (k_ * cos) + (rotate_half(k_) * sin)
434
+ return torch.cat((q_embed, q_pass), dim=-1).to(dtype), torch.cat((k_embed, k_pass), dim=-1).to(dtype)
435
+
436
+
437
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
438
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
439
+ """
440
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
441
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
442
+ """
443
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
444
+ if n_rep == 1:
445
+ return hidden_states
446
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
447
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
448
+
449
+
450
+ # Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->MiniMaxText01
451
+ class MiniMaxText01Attention(nn.Module):
452
+ """
453
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
454
+ and "Generating Long Sequences with Sparse Transformers".
455
+ """
456
+
457
+ def __init__(self, config: MiniMaxText01Config, layer_idx: Optional[int] = None):
458
+ super().__init__()
459
+ self.config = config
460
+ self.layer_idx = layer_idx
461
+ if layer_idx is None:
462
+ logger.warning_once(
463
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
464
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
465
+ "when creating this class."
466
+ )
467
+
468
+ self.hidden_size = config.hidden_size
469
+ self.num_heads = config.num_attention_heads
470
+ self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
471
+ self.num_key_value_heads = config.num_key_value_heads
472
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
473
+ self.max_position_embeddings = config.max_position_embeddings
474
+ self.rope_theta = config.rope_theta
475
+ self.is_causal = True
476
+ self.attention_dropout = config.attention_dropout
477
+
478
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
479
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
480
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
481
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
482
+ self.rotary_dim = getattr(config, 'rotary_dim', self.head_dim)
483
+
484
+ self.rotary_emb = MiniMaxText01RotaryEmbedding(
485
+ self.rotary_dim,
486
+ max_position_embeddings=self.max_position_embeddings,
487
+ base=self.rope_theta,
488
+ )
489
+
490
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
491
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
492
+
493
+ def forward(
494
+ self,
495
+ hidden_states: torch.Tensor,
496
+ attention_mask: Optional[torch.Tensor] = None,
497
+ position_ids: Optional[torch.LongTensor] = None,
498
+ past_key_value: Optional[Cache] = None,
499
+ output_attentions: bool = False,
500
+ use_cache: bool = False,
501
+ **kwargs,
502
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
503
+ if "padding_mask" in kwargs:
504
+ warnings.warn(
505
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
506
+ )
507
+ bsz, q_len, _ = hidden_states.size()
508
+
509
+ query_states = self.q_proj(hidden_states)
510
+ key_states = self.k_proj(hidden_states)
511
+ value_states = self.v_proj(hidden_states)
512
+
513
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
514
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
515
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
516
+
517
+ kv_seq_len = key_states.shape[-2]
518
+ if past_key_value is not None:
519
+ if self.layer_idx is None:
520
+ raise ValueError(
521
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
522
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
523
+ "with a layer index."
524
+ )
525
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
526
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
527
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
528
+
529
+ if past_key_value is not None:
530
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
531
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
532
+
533
+ # repeat k/v heads if n_kv_heads < n_heads
534
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
535
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
536
+
537
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
538
+
539
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
540
+ raise ValueError(
541
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
542
+ f" {attn_weights.size()}"
543
+ )
544
+
545
+ if attention_mask is not None:
546
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
547
+ raise ValueError(
548
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
549
+ )
550
+
551
+ attn_weights = attn_weights + attention_mask
552
+
553
+ # upcast attention to fp32
554
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
555
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
556
+ attn_output = torch.matmul(attn_weights, value_states)
557
+
558
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
559
+ raise ValueError(
560
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
561
+ f" {attn_output.size()}"
562
+ )
563
+
564
+ attn_output = attn_output.transpose(1, 2).contiguous()
565
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
566
+
567
+ attn_output = self.o_proj(attn_output)
568
+
569
+ if not output_attentions:
570
+ attn_weights = None
571
+
572
+ return attn_output, attn_weights, past_key_value
573
+
574
+
575
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->MiniMaxText01
576
+ class MiniMaxText01FlashAttention2(MiniMaxText01Attention):
577
+ """
578
+ MiniMaxText01 flash attention module. This module inherits from `MiniMaxText01Attention` as the weights of the module stays
579
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
580
+ flash attention and deal with padding tokens in case the input contains any of them.
581
+ """
582
+
583
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
584
+ def __init__(self, *args, **kwargs):
585
+ super().__init__(*args, **kwargs)
586
+
587
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
588
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
589
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
590
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
591
+
592
+ def forward(
593
+ self,
594
+ hidden_states: torch.Tensor,
595
+ attention_mask: Optional[torch.Tensor] = None,
596
+ position_ids: Optional[torch.LongTensor] = None,
597
+ past_key_value: Optional[Union[Cache, Tuple[torch.Tensor]]] = None,
598
+ output_attentions: bool = False,
599
+ use_cache: bool = False,
600
+ **kwargs,
601
+ ):
602
+ if "padding_mask" in kwargs:
603
+ warnings.warn(
604
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
605
+ )
606
+
607
+ # overwrite attention_mask with padding_mask
608
+ attention_mask = kwargs.pop("padding_mask")
609
+ bsz, q_len, _ = hidden_states.size()
610
+
611
+ query_states = self.q_proj(hidden_states)
612
+ key_states = self.k_proj(hidden_states)
613
+ value_states = self.v_proj(hidden_states)
614
+
615
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
616
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
617
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
618
+
619
+ kv_seq_len = key_states.shape[-2]
620
+ if past_key_value is not None:
621
+ kv_seq_len += past_key_value[0].shape[-3]
622
+
623
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
624
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
625
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
626
+
627
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
628
+
629
+ use_sliding_windows = (
630
+ _flash_supports_window_size
631
+ and getattr(self.config, "sliding_window", None) is not None
632
+ and kv_seq_len > self.config.sliding_window
633
+ )
634
+
635
+ if not _flash_supports_window_size:
636
+ logger.warning_once(
637
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
638
+ " make sure to upgrade flash-attn library."
639
+ )
640
+
641
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
642
+
643
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
644
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
645
+ # cast them back in float16 just to be sure everything works as expected.
646
+ input_dtype = query_states.dtype
647
+ if input_dtype == torch.float32:
648
+ if torch.is_autocast_enabled():
649
+ target_dtype = torch.get_autocast_gpu_dtype()
650
+ # Handle the case where the model is quantized
651
+ elif hasattr(self.config, "_pre_quantization_dtype"):
652
+ target_dtype = self.config._pre_quantization_dtype
653
+ else:
654
+ target_dtype = self.q_proj.weight.dtype
655
+
656
+ logger.warning_once(
657
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
658
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
659
+ f" {target_dtype}."
660
+ )
661
+
662
+ query_states = query_states.to(target_dtype)
663
+ key_states = key_states.to(target_dtype)
664
+ value_states = value_states.to(target_dtype)
665
+
666
+ # Reshape to the expected shape for Flash Attention
667
+ query_states = query_states.transpose(1, 2)
668
+ key_states = key_states.transpose(1, 2)
669
+ value_states = value_states.transpose(1, 2)
670
+
671
+ if past_key_value is not None:
672
+ # reuse k, v, for evaluation only
673
+ key_states = torch.cat([past_key_value[0], key_states], dim=-3)
674
+ value_states = torch.cat([past_key_value[1], value_states], dim=-3)
675
+
676
+ past_key_value = (key_states, value_states) if use_cache else None
677
+
678
+ attn_output = self._flash_attention_forward(
679
+ query_states,
680
+ key_states,
681
+ value_states,
682
+ attention_mask,
683
+ q_len,
684
+ dropout=dropout_rate,
685
+ use_sliding_windows=use_sliding_windows,
686
+ )
687
+
688
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
689
+ attn_output = self.o_proj(attn_output)
690
+
691
+ if not output_attentions:
692
+ attn_weights = None
693
+
694
+ return attn_output, attn_weights, past_key_value
695
+
696
+ def _flash_attention_forward(
697
+ self,
698
+ query_states,
699
+ key_states,
700
+ value_states,
701
+ attention_mask,
702
+ query_length,
703
+ dropout=0.0,
704
+ softmax_scale=None,
705
+ use_sliding_windows=False,
706
+ ):
707
+ """
708
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
709
+ first unpad the input, then computes the attention scores and pad the final attention scores.
710
+
711
+ Args:
712
+ query_states (`torch.Tensor`):
713
+ Input query states to be passed to Flash Attention API
714
+ key_states (`torch.Tensor`):
715
+ Input key states to be passed to Flash Attention API
716
+ value_states (`torch.Tensor`):
717
+ Input value states to be passed to Flash Attention API
718
+ attention_mask (`torch.Tensor`):
719
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
720
+ position of padding tokens and 1 for the position of non-padding tokens.
721
+ dropout (`float`):
722
+ Attention dropout
723
+ softmax_scale (`float`, *optional*):
724
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
725
+ use_sliding_windows (`bool`, *optional*):
726
+ Whether to activate sliding window attention.
727
+ """
728
+ if not self._flash_attn_uses_top_left_mask:
729
+ causal = self.is_causal
730
+ else:
731
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
732
+ causal = self.is_causal and query_length != 1
733
+
734
+ # Contains at least one padding token in the sequence
735
+ if attention_mask is not None:
736
+ batch_size = query_states.shape[0]
737
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
738
+ query_states, key_states, value_states, attention_mask, query_length
739
+ )
740
+
741
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
742
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
743
+
744
+ if not use_sliding_windows:
745
+ attn_output_unpad = flash_attn_varlen_func(
746
+ query_states,
747
+ key_states,
748
+ value_states,
749
+ cu_seqlens_q=cu_seqlens_q,
750
+ cu_seqlens_k=cu_seqlens_k,
751
+ max_seqlen_q=max_seqlen_in_batch_q,
752
+ max_seqlen_k=max_seqlen_in_batch_k,
753
+ dropout_p=dropout,
754
+ softmax_scale=softmax_scale,
755
+ causal=causal,
756
+ )
757
+ else:
758
+ attn_output_unpad = flash_attn_varlen_func(
759
+ query_states,
760
+ key_states,
761
+ value_states,
762
+ cu_seqlens_q=cu_seqlens_q,
763
+ cu_seqlens_k=cu_seqlens_k,
764
+ max_seqlen_q=max_seqlen_in_batch_q,
765
+ max_seqlen_k=max_seqlen_in_batch_k,
766
+ dropout_p=dropout,
767
+ softmax_scale=softmax_scale,
768
+ causal=causal,
769
+ window_size=(self.config.sliding_window, self.config.sliding_window),
770
+ )
771
+
772
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
773
+ else:
774
+ if not use_sliding_windows:
775
+ attn_output = flash_attn_func(
776
+ query_states,
777
+ key_states,
778
+ value_states,
779
+ dropout,
780
+ softmax_scale=softmax_scale,
781
+ causal=causal,
782
+ )
783
+ else:
784
+ attn_output = flash_attn_func(
785
+ query_states,
786
+ key_states,
787
+ value_states,
788
+ dropout,
789
+ softmax_scale=softmax_scale,
790
+ causal=causal,
791
+ window_size=(self.config.sliding_window, self.config.sliding_window),
792
+ )
793
+
794
+ return attn_output
795
+
796
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
797
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
798
+
799
+ # On the first iteration we need to properly re-create the padding mask
800
+ # by slicing it on the proper place
801
+ if kv_seq_len != attention_mask.shape[-1]:
802
+ attention_mask_num_tokens = attention_mask.shape[-1]
803
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len:]
804
+
805
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
806
+
807
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
808
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
809
+
810
+ if query_length == kv_seq_len:
811
+ query_layer = index_first_axis(
812
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
813
+ )
814
+ cu_seqlens_q = cu_seqlens_k
815
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
816
+ indices_q = indices_k
817
+ elif query_length == 1:
818
+ max_seqlen_in_batch_q = 1
819
+ cu_seqlens_q = torch.arange(
820
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
821
+ ) # There is a memcpy here, that is very bad.
822
+ indices_q = cu_seqlens_q[:-1]
823
+ query_layer = query_layer.squeeze(1)
824
+ else:
825
+ # The -q_len: slice assumes left padding.
826
+ attention_mask = attention_mask[:, -query_length:]
827
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
828
+
829
+ return (
830
+ query_layer,
831
+ key_layer,
832
+ value_layer,
833
+ indices_q,
834
+ (cu_seqlens_q, cu_seqlens_k),
835
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
836
+ )
837
+
838
+
839
+ class MiniMaxText01MLP(nn.Module):
840
+ def __init__(self, config):
841
+ super().__init__()
842
+ self.config = config
843
+ self.hidden_size = config.hidden_size
844
+ self.intermediate_size = config.intermediate_size
845
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
846
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
847
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
848
+ self.act_fn = ACT2FN[config.hidden_act]
849
+
850
+ def forward(self, x):
851
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
852
+ return down_proj
853
+
854
+
855
+ class MiniMaxText01BlockSparseTop2MLP(nn.Module):
856
+ def __init__(self, config: MiniMaxText01Config):
857
+ super().__init__()
858
+ self.ffn_dim = config.intermediate_size
859
+ self.hidden_dim = config.hidden_size
860
+
861
+ self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
862
+ self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
863
+ self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
864
+
865
+ self.act_fn = ACT2FN[config.hidden_act]
866
+
867
+ def forward(self, hidden_states):
868
+ current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
869
+ current_hidden_states = self.w2(current_hidden_states)
870
+ return current_hidden_states
871
+
872
+
873
+ class MiniMaxText01BLockSparseTop2MLP(MiniMaxText01BlockSparseTop2MLP):
874
+ def __init__(self, *args, **kwargs):
875
+ logger.warning_once(
876
+ "MiniMaxText01BLockSparseTop2MLP is deprecated by MiniMaxText01BlockSparseTop2MLP and will be removed in v4.40."
877
+ )
878
+ super().__init__(*args, **kwargs)
879
+
880
+
881
+ class MiniMaxText01SparseMoeBlock(nn.Module):
882
+ """
883
+ This implementation is
884
+ strictly equivalent to standard MoE with full capacity (no
885
+ dropped tokens). It's faster since it formulates MoE operations
886
+ in terms of block-sparse operations to accomodate imbalanced
887
+ assignments of tokens to experts, whereas standard MoE either
888
+ (1) drop tokens at the cost of reduced performance or (2) set
889
+ capacity factor to number of experts and thus waste computation
890
+ and memory on padding.
891
+ """
892
+
893
+ def __init__(self, config):
894
+ super().__init__()
895
+ self.hidden_dim = config.hidden_size
896
+ self.ffn_dim = config.intermediate_size
897
+ self.num_experts = config.num_local_experts
898
+ self.top_k = config.num_experts_per_tok
899
+
900
+ # gating
901
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
902
+
903
+ self.experts = nn.ModuleList([MiniMaxText01BlockSparseTop2MLP(config) for _ in range(self.num_experts)])
904
+
905
+ # Jitter parameters
906
+ self.jitter_noise = config.router_jitter_noise
907
+
908
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
909
+ """ """
910
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
911
+ if self.training and self.jitter_noise > 0:
912
+ hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
913
+ hidden_states = hidden_states.view(-1, hidden_dim)
914
+ # router_logits: (batch * sequence_length, n_experts)
915
+ router_logits = self.gate(hidden_states)
916
+
917
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
918
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
919
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
920
+ # we cast back to the input dtype
921
+ routing_weights = routing_weights.to(hidden_states.dtype)
922
+
923
+ final_hidden_states = torch.zeros(
924
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
925
+ )
926
+
927
+ # One hot encode the selected experts to create an expert mask
928
+ # this will be used to easily index which expert is going to be sollicitated
929
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
930
+
931
+ # Loop over all available experts in the model and perform the computation on each expert
932
+ for expert_idx in range(self.num_experts):
933
+ expert_layer = self.experts[expert_idx]
934
+ idx, top_x = torch.where(expert_mask[expert_idx])
935
+
936
+ # Index the correct hidden states and compute the expert hidden state for
937
+ # the current expert. We need to make sure to multiply the output hidden
938
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
939
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
940
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
941
+
942
+ # However `index_add_` only support torch tensors for indexing so we'll use
943
+ # the `top_x` tensor here.
944
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
945
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
946
+ return final_hidden_states, router_logits
947
+
948
+
949
+ class MiniMaxText01DecoderLayer(nn.Module):
950
+ def __init__(self, config: MiniMaxText01Config, layer_idx: int):
951
+ super().__init__()
952
+ self.config = config
953
+ self.hidden_size = config.hidden_size
954
+
955
+ self.self_attn = self.build_attn(config, layer_idx)
956
+
957
+ self.layer_idx = layer_idx
958
+
959
+ self.block_sparse_moe = MiniMaxText01SparseMoeBlock(config)
960
+ self.input_layernorm = MiniMaxText01RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
961
+ self.post_attention_layernorm = MiniMaxText01RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
962
+
963
+ self.postnorm = getattr(config, 'postnorm', False)
964
+ self.layernorm_attention_alpha = getattr(config, 'layernorm_linear_attention_alpha', 1) \
965
+ if config.attention_type == 0 else getattr(config, 'layernorm_full_attention_alpha', 1)
966
+ self.layernorm_attention_beta = getattr(config, 'layernorm_linear_attention_beta', 1) \
967
+ if config.attention_type == 0 else getattr(config, 'layernorm_full_attention_beta', 1)
968
+ self.layernorm_mlp_alpha = getattr(config, 'layernorm_mlp_alpha', 1)
969
+ self.layernorm_mlp_beta = getattr(config, 'layernorm_mlp_beta', 1)
970
+
971
+ shared_intermediate = getattr(config, 'shared_intermediate_size', 0)
972
+ self.shared_moe = False
973
+ if shared_intermediate > 0:
974
+ self.shared_moe = True
975
+ self.shared_mlp = MiniMaxText01MLP(config)
976
+ self.coefficient = torch.nn.Linear(self.hidden_size, 1, bias=False)
977
+
978
+ def build_attn(self, config, layer_idx):
979
+ if config.attention_type == 0:
980
+ Attention_module = MiniMaxText01LightningAttention
981
+ else:
982
+ Attention_module = MiniMaxText01FlashAttention2
983
+
984
+ return Attention_module(
985
+ config,
986
+ layer_idx
987
+ )
988
+
989
+ def forward(
990
+ self,
991
+ hidden_states: torch.Tensor,
992
+ attention_mask: Optional[torch.Tensor] = None,
993
+ position_ids: Optional[torch.LongTensor] = None,
994
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
995
+ output_attentions: Optional[bool] = False,
996
+ output_router_logits: Optional[bool] = False,
997
+ use_cache: Optional[bool] = False,
998
+ slope_rate: Optional[float] = None,
999
+ **kwargs,
1000
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1001
+ if "padding_mask" in kwargs:
1002
+ warnings.warn(
1003
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1004
+ )
1005
+ """
1006
+ Args:
1007
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1008
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1009
+ `(batch, sequence_length)` where padding elements are indicated by 0.
1010
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1011
+ output_attentions (`bool`, *optional*):
1012
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1013
+ returned tensors for more detail.
1014
+ output_router_logits (`bool`, *optional*):
1015
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1016
+ should not be returned during inference.
1017
+ use_cache (`bool`, *optional*):
1018
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1019
+ (see `past_key_values`).
1020
+ """
1021
+
1022
+ residual = hidden_states
1023
+
1024
+ hidden_states = self.input_layernorm(hidden_states)
1025
+ if self.postnorm:
1026
+ residual = hidden_states
1027
+
1028
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1029
+ hidden_states=hidden_states,
1030
+ position_ids=position_ids,
1031
+ attn_mask=attention_mask,
1032
+ past_key_value=past_key_value,
1033
+ output_attentions=output_attentions,
1034
+ use_cache=use_cache,
1035
+ slope_rate=slope_rate,
1036
+ )
1037
+
1038
+ hidden_states = residual * self.layernorm_attention_alpha \
1039
+ + hidden_states * self.layernorm_attention_beta
1040
+
1041
+ # Fully Connected
1042
+ residual = hidden_states
1043
+ hidden_states = self.post_attention_layernorm(hidden_states)
1044
+ if self.postnorm:
1045
+ residual = hidden_states
1046
+
1047
+ moe_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
1048
+ if self.shared_moe:
1049
+ output_mlp = self.shared_mlp(hidden_states)
1050
+ weight_fp32 = self.coefficient.weight.float()
1051
+ coef = hidden_states.to(torch.float32) @ weight_fp32.T
1052
+ coef = torch.nn.functional.sigmoid(coef).to(hidden_states.dtype)
1053
+ hidden_states = moe_hidden_states * (1 - coef) + output_mlp * coef
1054
+ else:
1055
+ hidden_states = moe_hidden_states
1056
+
1057
+ hidden_states = residual * self.layernorm_mlp_alpha \
1058
+ + hidden_states * self.layernorm_mlp_beta
1059
+
1060
+ outputs = (hidden_states,)
1061
+
1062
+ if output_attentions:
1063
+ outputs += (self_attn_weights,)
1064
+
1065
+ if use_cache:
1066
+ outputs += (present_key_value,)
1067
+
1068
+ if output_router_logits:
1069
+ outputs += (router_logits,)
1070
+
1071
+ return outputs
1072
+
1073
+
1074
+ MIXTRAL_START_DOCSTRING = r"""
1075
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1076
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1077
+ etc.)
1078
+
1079
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1080
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1081
+ and behavior.
1082
+
1083
+ Parameters:
1084
+ config ([`MiniMaxText01Config`]):
1085
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1086
+ load the weights associated with the model, only the configuration. Check out the
1087
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1088
+ """
1089
+
1090
+
1091
+ @add_start_docstrings(
1092
+ "The bare MiniMaxText01 Model outputting raw hidden-states without any specific head on top.",
1093
+ MIXTRAL_START_DOCSTRING,
1094
+ )
1095
+ # Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->MiniMaxText01
1096
+ class MiniMaxText01PreTrainedModel(PreTrainedModel):
1097
+ config_class = MiniMaxText01Config
1098
+ base_model_prefix = "model"
1099
+ supports_gradient_checkpointing = True
1100
+ _no_split_modules = ["MiniMaxText01DecoderLayer"]
1101
+ _skip_keys_device_placement = "past_key_values"
1102
+ _supports_flash_attn_2 = True
1103
+ _supports_sdpa = True
1104
+
1105
+ def _init_weights(self, module):
1106
+ std = self.config.initializer_range
1107
+ if isinstance(module, nn.Linear):
1108
+ module.weight.data.normal_(mean=0.0, std=std)
1109
+ if module.bias is not None:
1110
+ module.bias.data.zero_()
1111
+ elif isinstance(module, nn.Embedding):
1112
+ module.weight.data.normal_(mean=0.0, std=std)
1113
+ if module.padding_idx is not None:
1114
+ module.weight.data[module.padding_idx].zero_()
1115
+
1116
+
1117
+ MIXTRAL_INPUTS_DOCSTRING = r"""
1118
+ Args:
1119
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1120
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1121
+ it.
1122
+
1123
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1124
+ [`PreTrainedTokenizer.__call__`] for details.
1125
+
1126
+ [What are input IDs?](../glossary#input-ids)
1127
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1128
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1129
+
1130
+ - 1 for tokens that are **not masked**,
1131
+ - 0 for tokens that are **masked**.
1132
+
1133
+ [What are attention masks?](../glossary#attention-mask)
1134
+
1135
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1136
+ [`PreTrainedTokenizer.__call__`] for details.
1137
+
1138
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1139
+ `past_key_values`).
1140
+
1141
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1142
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1143
+ information on the default strategy.
1144
+
1145
+ - 1 indicates the head is **not masked**,
1146
+ - 0 indicates the head is **masked**.
1147
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1148
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1149
+ config.n_positions - 1]`.
1150
+
1151
+ [What are position IDs?](../glossary#position-ids)
1152
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1153
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
1154
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
1155
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1156
+
1157
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1158
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1159
+
1160
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1161
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1162
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1163
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1164
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1165
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1166
+ model's internal embedding lookup matrix.
1167
+ use_cache (`bool`, *optional*):
1168
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1169
+ `past_key_values`).
1170
+ output_attentions (`bool`, *optional*):
1171
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1172
+ tensors for more detail.
1173
+ output_hidden_states (`bool`, *optional*):
1174
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1175
+ more detail.
1176
+ output_router_logits (`bool`, *optional*):
1177
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1178
+ should not be returned during inference.
1179
+ return_dict (`bool`, *optional*):
1180
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1181
+ """
1182
+
1183
+
1184
+ @add_start_docstrings(
1185
+ "The bare MiniMaxText01 Model outputting raw hidden-states without any specific head on top.",
1186
+ MIXTRAL_START_DOCSTRING,
1187
+ )
1188
+ # Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->MiniMaxText01
1189
+ class MiniMaxText01Model(MiniMaxText01PreTrainedModel):
1190
+ """
1191
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniMaxText01DecoderLayer`]
1192
+
1193
+ Args:
1194
+ config: MiniMaxText01Config
1195
+ """
1196
+
1197
+ def __init__(self, config: MiniMaxText01Config):
1198
+ super().__init__(config)
1199
+ self.padding_idx = config.pad_token_id
1200
+ self.vocab_size = config.vocab_size
1201
+
1202
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1203
+ self.attn_type_list = config.attn_type_list
1204
+ config_copy = copy.deepcopy(config)
1205
+
1206
+ self.layers = nn.ModuleList([])
1207
+ for i in range(config.num_hidden_layers):
1208
+ _config = copy.deepcopy(config)
1209
+ if self.attn_type_list[i] == 0:
1210
+ _config._attn_implementation = 'linear_attention'
1211
+ _config.attention_type = 0
1212
+ else:
1213
+ _config._attn_implementation = config_copy._attn_implementation
1214
+ _config.attention_type = 1
1215
+ self.layers.append(MiniMaxText01DecoderLayer(_config, i))
1216
+
1217
+ self._attn_implementation = config_copy._attn_implementation
1218
+ self.norm = MiniMaxText01RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1219
+
1220
+ self.gradient_checkpointing = False
1221
+ self.slopes = self._build_slope_tensor(config.num_attention_heads)
1222
+ # mask
1223
+ self._linear_attn_mask = torch.empty(0)
1224
+
1225
+ # Initialize weights and apply final processing
1226
+ self.post_init()
1227
+
1228
+ def get_input_embeddings(self):
1229
+ return self.embed_tokens
1230
+
1231
+ def set_input_embeddings(self, value):
1232
+ self.embed_tokens = value
1233
+
1234
+ @staticmethod
1235
+ def _build_slope_tensor(n_attention_heads: int):
1236
+
1237
+ def get_slopes(n):
1238
+
1239
+ def get_slopes_power_of_2(n):
1240
+ start = 2 ** (-(2 ** -(math.log2(n) - 3)))
1241
+ ratio = start
1242
+ return [start * ratio ** i for i in range(n)]
1243
+
1244
+ if math.log2(n).is_integer():
1245
+ return get_slopes_power_of_2(
1246
+ n) # In the paper, we only train models that have 2^a heads for some a. This function has
1247
+ else: # some good properties that only occur when the input is a power of 2. To maintain that even
1248
+ closest_power_of_2 = 2 ** math.floor(
1249
+ math.log2(n)) # when the number of heads is not a power of 2, we use this workaround.
1250
+ return (get_slopes_power_of_2(closest_power_of_2)
1251
+ + get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
1252
+
1253
+ # h, 1, 1
1254
+ slopes = torch.tensor(get_slopes(n_attention_heads), dtype=torch.float32).reshape(n_attention_heads, 1, 1)
1255
+
1256
+ return slopes
1257
+
1258
+ # Ignore copy
1259
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1260
+ def forward(
1261
+ self,
1262
+ input_ids: torch.LongTensor = None,
1263
+ attention_mask: Optional[torch.Tensor] = None,
1264
+ position_ids: Optional[torch.LongTensor] = None,
1265
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1266
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1267
+ use_cache: Optional[bool] = None,
1268
+ output_attentions: Optional[bool] = None,
1269
+ output_hidden_states: Optional[bool] = None,
1270
+ output_router_logits: Optional[bool] = None,
1271
+ return_dict: Optional[bool] = None,
1272
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
1273
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1274
+ output_router_logits = (
1275
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1276
+ )
1277
+ output_hidden_states = (
1278
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1279
+ )
1280
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1281
+
1282
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1283
+
1284
+ # retrieve input_ids and inputs_embeds
1285
+ if input_ids is not None and inputs_embeds is not None:
1286
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1287
+ elif input_ids is not None:
1288
+ batch_size, seq_length = input_ids.shape
1289
+ default_device = input_ids.device
1290
+ elif inputs_embeds is not None:
1291
+ batch_size, seq_length, _ = inputs_embeds.shape
1292
+ default_device = inputs_embeds.device
1293
+ else:
1294
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1295
+
1296
+ past_key_values_length = 0
1297
+
1298
+ if self.gradient_checkpointing and self.training:
1299
+ if use_cache:
1300
+ logger.warning_once(
1301
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1302
+ )
1303
+ use_cache = False
1304
+
1305
+ seq_length_with_past = seq_length
1306
+ if past_key_values is not None:
1307
+ for idx in range(len(past_key_values)):
1308
+ if self.attn_type_list[idx] == 1:
1309
+ past_key_values_length = past_key_values[idx][0].shape[-3]
1310
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1311
+ break
1312
+
1313
+ if position_ids is None:
1314
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1315
+ position_ids = torch.arange(
1316
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1317
+ )
1318
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1319
+ else:
1320
+ position_ids = position_ids.view(-1, seq_length).long()
1321
+
1322
+ if inputs_embeds is None:
1323
+ inputs_embeds = self.embed_tokens(input_ids)
1324
+
1325
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1326
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1327
+ if is_padding_right:
1328
+ raise ValueError(
1329
+ "You are attempting to perform batched generation with padding_side='right'"
1330
+ " this may lead to unexpected behaviour for Flash Attention version of MiniMaxText01. Make sure to "
1331
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1332
+ )
1333
+ slope_rates = [self.slopes.to(default_device) for _ in range(len(self.layers))]
1334
+ hidden_states = inputs_embeds
1335
+ # decoder layers
1336
+ all_hidden_states = () if output_hidden_states else None
1337
+ all_self_attns = () if output_attentions else None
1338
+ all_router_logits = () if output_router_logits else None
1339
+ next_decoder_cache = () if use_cache else None
1340
+
1341
+ for idx, decoder_layer in enumerate(self.layers):
1342
+ if output_hidden_states:
1343
+ all_hidden_states += (hidden_states,)
1344
+
1345
+ past_key_value = (past_key_values[idx] if past_key_values is not None else None)
1346
+ attn_mask = attention_mask
1347
+ slope_rate = slope_rates[idx]
1348
+ slope_rate = slope_rate * (1 - idx / (len(self.layers) - 1) + 1e-5)
1349
+ if self.gradient_checkpointing and self.training:
1350
+ layer_outputs = self._gradient_checkpointing_func(
1351
+ decoder_layer.__call__,
1352
+ hidden_states,
1353
+ attention_mask,
1354
+ position_ids,
1355
+ past_key_values,
1356
+ output_attentions,
1357
+ output_router_logits,
1358
+ use_cache,
1359
+ )
1360
+ else:
1361
+ layer_outputs = decoder_layer(
1362
+ hidden_states,
1363
+ attention_mask=attn_mask,
1364
+ position_ids=position_ids,
1365
+ past_key_value=past_key_value,
1366
+ output_attentions=output_attentions,
1367
+ output_router_logits=output_router_logits,
1368
+ use_cache=use_cache,
1369
+ slope_rate=slope_rate
1370
+ )
1371
+
1372
+ hidden_states = layer_outputs[0]
1373
+
1374
+ if use_cache:
1375
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1376
+
1377
+ if output_attentions:
1378
+ all_self_attns += (layer_outputs[1],)
1379
+
1380
+ if output_router_logits:
1381
+ all_router_logits += (layer_outputs[-1],)
1382
+
1383
+ hidden_states = self.norm(hidden_states)
1384
+
1385
+ # add hidden states from the last decoder layer
1386
+ if output_hidden_states:
1387
+ all_hidden_states += (hidden_states,)
1388
+ next_cache = next_decoder_cache if use_cache else None
1389
+ if not return_dict:
1390
+ return tuple(
1391
+ v
1392
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1393
+ if v is not None
1394
+ )
1395
+ return MoeModelOutputWithPast(
1396
+ last_hidden_state=hidden_states,
1397
+ past_key_values=next_cache,
1398
+ hidden_states=all_hidden_states,
1399
+ attentions=all_self_attns,
1400
+ router_logits=all_router_logits,
1401
+ )
1402
+
1403
+
1404
+ class MiniMaxText01ForCausalLM(MiniMaxText01PreTrainedModel):
1405
+ _tied_weights_keys = ["lm_head.weight"]
1406
+
1407
+ def __init__(self, config):
1408
+ super().__init__(config)
1409
+ self.model = MiniMaxText01Model(config)
1410
+ self.vocab_size = config.vocab_size
1411
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1412
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1413
+ self.num_experts = config.num_local_experts
1414
+ self.num_experts_per_tok = config.num_experts_per_tok
1415
+ # Initialize weights and apply final processing
1416
+ self.post_init()
1417
+
1418
+ def get_input_embeddings(self):
1419
+ return self.model.embed_tokens
1420
+
1421
+ def set_input_embeddings(self, value):
1422
+ self.model.embed_tokens = value
1423
+
1424
+ def get_output_embeddings(self):
1425
+ return self.lm_head
1426
+
1427
+ def set_output_embeddings(self, new_embeddings):
1428
+ self.lm_head = new_embeddings
1429
+
1430
+ def set_decoder(self, decoder):
1431
+ self.model = decoder
1432
+
1433
+ def get_decoder(self):
1434
+ return self.model
1435
+
1436
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1437
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1438
+ # Ignore copy
1439
+ def forward(
1440
+ self,
1441
+ input_ids: torch.LongTensor = None,
1442
+ attention_mask: Optional[torch.Tensor] = None,
1443
+ position_ids: Optional[torch.LongTensor] = None,
1444
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1445
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1446
+ labels: Optional[torch.LongTensor] = None,
1447
+ use_cache: Optional[bool] = None,
1448
+ output_attentions: Optional[bool] = None,
1449
+ output_hidden_states: Optional[bool] = None,
1450
+ output_router_logits: Optional[bool] = None,
1451
+ return_dict: Optional[bool] = None,
1452
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1453
+ r"""
1454
+ Args:
1455
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1456
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1457
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1458
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1459
+
1460
+ Returns:
1461
+
1462
+ Example:
1463
+
1464
+ ```python
1465
+ >>> from transformers import AutoTokenizer, MiniMaxText01ForCausalLM
1466
+
1467
+ >>> model = MiniMaxText01ForCausalLM.from_pretrained(PATH_TO_WEIGHTS)
1468
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_WEIGHTS)
1469
+
1470
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1471
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1472
+
1473
+ >>> # Generate
1474
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1475
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1476
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1477
+ ```"""
1478
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1479
+ output_router_logits = (
1480
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1481
+ )
1482
+
1483
+ output_hidden_states = (
1484
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1485
+ )
1486
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1487
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1488
+ outputs = self.model(
1489
+ input_ids=input_ids,
1490
+ attention_mask=attention_mask,
1491
+ position_ids=position_ids,
1492
+ past_key_values=past_key_values,
1493
+ inputs_embeds=inputs_embeds,
1494
+ use_cache=use_cache,
1495
+ output_attentions=output_attentions,
1496
+ output_hidden_states=output_hidden_states,
1497
+ output_router_logits=output_router_logits,
1498
+ return_dict=return_dict,
1499
+ )
1500
+
1501
+ hidden_states = outputs[0]
1502
+ logits = self.lm_head(hidden_states)
1503
+ logits = logits.float()
1504
+
1505
+ loss = None
1506
+ if labels is not None:
1507
+ # Shift so that tokens < n predict n
1508
+ shift_logits = logits[..., :-1, :].contiguous()
1509
+ shift_labels = labels[..., 1:].contiguous()
1510
+ # Flatten the tokens
1511
+ loss_fct = CrossEntropyLoss()
1512
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1513
+ shift_labels = shift_labels.view(-1)
1514
+ # Enable model parallelism
1515
+ shift_labels = shift_labels.to(shift_logits.device)
1516
+ loss = loss_fct(shift_logits, shift_labels)
1517
+
1518
+ aux_loss = None
1519
+ if output_router_logits:
1520
+ aux_loss = load_balancing_loss_func(
1521
+ outputs.router_logits if return_dict else outputs[-1],
1522
+ self.num_experts,
1523
+ self.num_experts_per_tok,
1524
+ attention_mask,
1525
+ )
1526
+ if labels is not None:
1527
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1528
+
1529
+ if not return_dict:
1530
+ output = (logits,) + outputs[1:]
1531
+ if output_router_logits:
1532
+ output = (aux_loss,) + output
1533
+ return (loss,) + output if loss is not None else output
1534
+
1535
+ torch.cuda.empty_cache()
1536
+ return MoeCausalLMOutputWithPast(
1537
+ loss=loss,
1538
+ aux_loss=aux_loss,
1539
+ logits=logits,
1540
+ past_key_values=outputs.past_key_values,
1541
+ hidden_states=outputs.hidden_states,
1542
+ attentions=outputs.attentions,
1543
+ router_logits=outputs.router_logits,
1544
+ )
1545
+
1546
+ def prepare_inputs_for_generation(
1547
+ self,
1548
+ input_ids,
1549
+ past_key_values=None,
1550
+ attention_mask=None,
1551
+ inputs_embeds=None,
1552
+ **kwargs,
1553
+ ):
1554
+ if past_key_values:
1555
+ input_ids = input_ids[:, -1:]
1556
+
1557
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1558
+ if inputs_embeds is not None and past_key_values is None:
1559
+ model_inputs = {"inputs_embeds": inputs_embeds}
1560
+ else:
1561
+ model_inputs = {"input_ids": input_ids}
1562
+
1563
+ model_inputs.update({
1564
+ "past_key_values": past_key_values,
1565
+ "use_cache": kwargs.get("use_cache"),
1566
+ "attention_mask": attention_mask,
1567
+ })
1568
+ return model_inputs
1569
+
1570
+ @staticmethod
1571
+ def _reorder_cache(past_key_values, beam_idx):
1572
+ reordered_past = ()
1573
+ for layer_past in past_key_values:
1574
+ reordered_past += (
1575
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1576
+ )
1577
+ return reordered_past
1578
+
1579
+
1580
+ @add_start_docstrings(
1581
+ """
1582
+ The MiniMaxText01 Model transformer with a sequence classification head on top (linear layer).
1583
+
1584
+ [`MiniMaxText01ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1585
+ (e.g. GPT-2) do.
1586
+
1587
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1588
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1589
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1590
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1591
+ each row of the batch).
1592
+ """,
1593
+ MIXTRAL_START_DOCSTRING,
1594
+ )
1595
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->MiniMaxText01, LLAMA->MIXTRAL
1596
+ class MiniMaxText01ForSequenceClassification(MiniMaxText01PreTrainedModel):
1597
+ def __init__(self, config):
1598
+ super().__init__(config)
1599
+ self.num_labels = config.num_labels
1600
+ self.model = MiniMaxText01Model(config)
1601
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1602
+
1603
+ # Initialize weights and apply final processing
1604
+ self.post_init()
1605
+
1606
+ def get_input_embeddings(self):
1607
+ return self.model.embed_tokens
1608
+
1609
+ def set_input_embeddings(self, value):
1610
+ self.model.embed_tokens = value
1611
+
1612
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1613
+ def forward(
1614
+ self,
1615
+ input_ids: torch.LongTensor = None,
1616
+ attention_mask: Optional[torch.Tensor] = None,
1617
+ position_ids: Optional[torch.LongTensor] = None,
1618
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1619
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1620
+ labels: Optional[torch.LongTensor] = None,
1621
+ use_cache: Optional[bool] = None,
1622
+ output_attentions: Optional[bool] = None,
1623
+ output_hidden_states: Optional[bool] = None,
1624
+ return_dict: Optional[bool] = None,
1625
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1626
+ r"""
1627
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1628
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1629
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1630
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1631
+ """
1632
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1633
+
1634
+ transformer_outputs = self.model(
1635
+ input_ids,
1636
+ attention_mask=attention_mask,
1637
+ position_ids=position_ids,
1638
+ past_key_values=past_key_values,
1639
+ inputs_embeds=inputs_embeds,
1640
+ use_cache=use_cache,
1641
+ output_attentions=output_attentions,
1642
+ output_hidden_states=output_hidden_states,
1643
+ return_dict=return_dict,
1644
+ )
1645
+ hidden_states = transformer_outputs[0]
1646
+ logits = self.score(hidden_states)
1647
+
1648
+ if input_ids is not None:
1649
+ batch_size = input_ids.shape[0]
1650
+ else:
1651
+ batch_size = inputs_embeds.shape[0]
1652
+
1653
+ if self.config.pad_token_id is None and batch_size != 1:
1654
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1655
+ if self.config.pad_token_id is None:
1656
+ sequence_lengths = -1
1657
+ else:
1658
+ if input_ids is not None:
1659
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1660
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1661
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1662
+ sequence_lengths = sequence_lengths.to(logits.device)
1663
+ else:
1664
+ sequence_lengths = -1
1665
+
1666
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1667
+
1668
+ loss = None
1669
+ if labels is not None:
1670
+ labels = labels.to(logits.device)
1671
+ if self.config.problem_type is None:
1672
+ if self.num_labels == 1:
1673
+ self.config.problem_type = "regression"
1674
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1675
+ self.config.problem_type = "single_label_classification"
1676
+ else:
1677
+ self.config.problem_type = "multi_label_classification"
1678
+
1679
+ if self.config.problem_type == "regression":
1680
+ loss_fct = MSELoss()
1681
+ if self.num_labels == 1:
1682
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1683
+ else:
1684
+ loss = loss_fct(pooled_logits, labels)
1685
+ elif self.config.problem_type == "single_label_classification":
1686
+ loss_fct = CrossEntropyLoss()
1687
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1688
+ elif self.config.problem_type == "multi_label_classification":
1689
+ loss_fct = BCEWithLogitsLoss()
1690
+ loss = loss_fct(pooled_logits, labels)
1691
+ if not return_dict:
1692
+ output = (pooled_logits,) + transformer_outputs[1:]
1693
+ return ((loss,) + output) if loss is not None else output
1694
+
1695
+ return SequenceClassifierOutputWithPast(
1696
+ loss=loss,
1697
+ logits=pooled_logits,
1698
+ past_key_values=transformer_outputs.past_key_values,
1699
+ hidden_states=transformer_outputs.hidden_states,
1700
+ attentions=transformer_outputs.attentions,
1701
+ )
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<beginning_of_sentence>",
4
+ "clean_up_tokenization_spaces": false,
5
+ "eos_token": "<end_of_sentence>",
6
+ "model_max_length": 40960000,
7
+ "tokenizer_class": "GPT2Tokenizer",
8
+ "unk_token": "<end_of_document>",
9
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% elif message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\\n' + function | tojson + '<end_of_sentence>\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}"
10
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff