add docs
Browse files- function_call_guide.md +270 -0
- function_call_guide_cn.md +267 -0
- transformers_deployment_guide.md +97 -0
- transformers_deployment_guide_cn.md +95 -0
- vllm_deployment_guide.md +166 -0
- vllm_deployment_guide_cn.md +161 -0
function_call_guide.md
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MiniMax-M1 Function Call Guide
|
2 |
+
|
3 |
+
[FunctionCall中文使用指南](./function_call_guide_cn.md)
|
4 |
+
|
5 |
+
## 📖 Introduction
|
6 |
+
|
7 |
+
The MiniMax-M1 model supports function calling capabilities, enabling the model to identify when external functions need to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-M1.
|
8 |
+
|
9 |
+
## 🚀 Quick Start
|
10 |
+
|
11 |
+
### Using Chat Template
|
12 |
+
|
13 |
+
MiniMax-M1 uses a specific chat template format to handle function calls. The chat template is defined in `tokenizer_config.json`, and you can use it in your code through the template.
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
|
18 |
+
def get_default_tools():
|
19 |
+
return [
|
20 |
+
{
|
21 |
+
{
|
22 |
+
"name": "get_current_weather",
|
23 |
+
"description": "Get the latest weather for a location",
|
24 |
+
"parameters": {
|
25 |
+
"type": "object",
|
26 |
+
"properties": {
|
27 |
+
"location": {
|
28 |
+
"type": "string",
|
29 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
30 |
+
}
|
31 |
+
},
|
32 |
+
}
|
33 |
+
"required": ["location"],
|
34 |
+
"type": "object"
|
35 |
+
}
|
36 |
+
}
|
37 |
+
]
|
38 |
+
|
39 |
+
# Load model and tokenizer
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
+
prompt = "What's the weather like in Shanghai today?"
|
42 |
+
messages = [
|
43 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
|
44 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
45 |
+
]
|
46 |
+
|
47 |
+
# Enable function call tools
|
48 |
+
tools = get_default_tools()
|
49 |
+
|
50 |
+
# Apply chat template and add tool definitions
|
51 |
+
text = tokenizer.apply_chat_template(
|
52 |
+
messages,
|
53 |
+
tokenize=False,
|
54 |
+
add_generation_prompt=True,
|
55 |
+
tools=tools
|
56 |
+
)
|
57 |
+
```
|
58 |
+
|
59 |
+
## 🛠️ Function Call Definition
|
60 |
+
|
61 |
+
### Function Structure
|
62 |
+
|
63 |
+
Function calls need to be defined in the `tools` field of the request body. Each function consists of the following components:
|
64 |
+
|
65 |
+
```json
|
66 |
+
{
|
67 |
+
"tools": [
|
68 |
+
{
|
69 |
+
"name": "search_web",
|
70 |
+
"description": "Search function.",
|
71 |
+
"parameters": {
|
72 |
+
"properties": {
|
73 |
+
"query_list": {
|
74 |
+
"description": "Keywords for search, with list element count of 1.",
|
75 |
+
"items": { "type": "string" },
|
76 |
+
"type": "array"
|
77 |
+
},
|
78 |
+
"query_tag": {
|
79 |
+
"description": "Classification of the query",
|
80 |
+
"items": { "type": "string" },
|
81 |
+
"type": "array"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"required": [ "query_list", "query_tag" ],
|
85 |
+
"type": "object"
|
86 |
+
}
|
87 |
+
}
|
88 |
+
]
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Field Descriptions:**
|
93 |
+
- `name`: Function name
|
94 |
+
- `description`: Function description
|
95 |
+
- `parameters`: Function parameter definition
|
96 |
+
- `properties`: Parameter property definitions, where key is the parameter name and value contains detailed parameter description
|
97 |
+
- `required`: List of required parameters
|
98 |
+
- `type`: Parameter type (usually "object")
|
99 |
+
|
100 |
+
### Internal Model Processing Format
|
101 |
+
|
102 |
+
When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
|
103 |
+
|
104 |
+
```
|
105 |
+
]~!b[]~b]system ai_setting=Conch AI
|
106 |
+
MiniMax AI is an AI assistant independently developed by MiniMax. [e~[
|
107 |
+
]~b]system tool_setting=tools
|
108 |
+
You are provided with these tools:
|
109 |
+
<tools>
|
110 |
+
{"name": "search_web", "description": "Search function.", "parameters": {"properties": {"query_list": {"description": "Keywords for search, with list element count of 1.", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "Classification of the query", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
111 |
+
</tools>
|
112 |
+
|
113 |
+
If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
|
114 |
+
<tool_calls>
|
115 |
+
{"name": <tool-name>, "arguments": <args-json-object>}
|
116 |
+
...
|
117 |
+
</tool_calls>[e~[
|
118 |
+
]~b]user name=User
|
119 |
+
When were the most recent launch events for OpenAI and Gemini?[e~[
|
120 |
+
]~b]ai name=Conch AI
|
121 |
+
```
|
122 |
+
|
123 |
+
### Model Output Format
|
124 |
+
|
125 |
+
The model outputs function calls in the following format:
|
126 |
+
|
127 |
+
```xml
|
128 |
+
<think>
|
129 |
+
Okay, I will search for the OpenAI and Gemini latest release.
|
130 |
+
</think>
|
131 |
+
<tool_calls>
|
132 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
|
133 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
|
134 |
+
</tool_calls>
|
135 |
+
```
|
136 |
+
|
137 |
+
## 📥 Function Call Result Processing
|
138 |
+
|
139 |
+
### Parsing Function Calls
|
140 |
+
|
141 |
+
You can use the following code to parse function calls from the model output:
|
142 |
+
|
143 |
+
```python
|
144 |
+
import re
|
145 |
+
import json
|
146 |
+
|
147 |
+
def parse_function_calls(content: str):
|
148 |
+
"""
|
149 |
+
Parse function calls from model output
|
150 |
+
"""
|
151 |
+
function_calls = []
|
152 |
+
|
153 |
+
# Match content within <tool_calls> tags
|
154 |
+
tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
|
155 |
+
tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
|
156 |
+
|
157 |
+
if not tool_calls_match:
|
158 |
+
return function_calls
|
159 |
+
|
160 |
+
tool_calls_content = tool_calls_match.group(1).strip()
|
161 |
+
|
162 |
+
# Parse each function call (one JSON object per line)
|
163 |
+
for line in tool_calls_content.split('\n'):
|
164 |
+
line = line.strip()
|
165 |
+
if not line:
|
166 |
+
continue
|
167 |
+
|
168 |
+
try:
|
169 |
+
# Parse JSON format function call
|
170 |
+
call_data = json.loads(line)
|
171 |
+
function_name = call_data.get("name")
|
172 |
+
arguments = call_data.get("arguments", {})
|
173 |
+
|
174 |
+
function_calls.append({
|
175 |
+
"name": function_name,
|
176 |
+
"arguments": arguments
|
177 |
+
})
|
178 |
+
|
179 |
+
print(f"Function call: {function_name}, Arguments: {arguments}")
|
180 |
+
|
181 |
+
except json.JSONDecodeError as e:
|
182 |
+
print(f"Parameter parsing failed: {line}, Error: {e}")
|
183 |
+
|
184 |
+
return function_calls
|
185 |
+
|
186 |
+
# Example: Handle weather query function
|
187 |
+
def execute_function_call(function_name: str, arguments: dict):
|
188 |
+
"""
|
189 |
+
Execute function call and return result
|
190 |
+
"""
|
191 |
+
if function_name == "get_current_weather":
|
192 |
+
location = arguments.get("location", "Unknown location")
|
193 |
+
# Build function execution result
|
194 |
+
return {
|
195 |
+
"role": "tool",
|
196 |
+
"name": function_name,
|
197 |
+
"content": json.dumps({
|
198 |
+
"location": location,
|
199 |
+
"temperature": "25",
|
200 |
+
"unit": "celsius",
|
201 |
+
"weather": "Sunny"
|
202 |
+
}, ensure_ascii=False)
|
203 |
+
}
|
204 |
+
elif function_name == "search_web":
|
205 |
+
query_list = arguments.get("query_list", [])
|
206 |
+
query_tag = arguments.get("query_tag", [])
|
207 |
+
# Simulate search results
|
208 |
+
return {
|
209 |
+
"role": "tool",
|
210 |
+
"name": function_name,
|
211 |
+
"content": f"Search keywords: {query_list}, Categories: {query_tag}\nSearch results: Relevant information found"
|
212 |
+
}
|
213 |
+
|
214 |
+
return None
|
215 |
+
```
|
216 |
+
|
217 |
+
### Returning Function Execution Results to the Model
|
218 |
+
|
219 |
+
After successfully parsing function calls, you should add the function execution results to the conversation history so that the model can access and utilize this information in subsequent interactions.
|
220 |
+
|
221 |
+
#### Single Result
|
222 |
+
|
223 |
+
If the model decides to call `search_web`, we suggest you to return the function result in the following format, with the `name` field set to the specific tool name.
|
224 |
+
|
225 |
+
```json
|
226 |
+
{
|
227 |
+
"data": [
|
228 |
+
{
|
229 |
+
"role": "tool",
|
230 |
+
"name": "search_web",
|
231 |
+
"content": "search_result"
|
232 |
+
}
|
233 |
+
]
|
234 |
+
}
|
235 |
+
```
|
236 |
+
|
237 |
+
Corresponding model input format:
|
238 |
+
```
|
239 |
+
]~b]tool name=search_web
|
240 |
+
search_result[e~[
|
241 |
+
```
|
242 |
+
|
243 |
+
|
244 |
+
#### Multiple Result
|
245 |
+
If the model decides to call `search_web` and `get_current_weather` at the same time, we suggest you to return the multiple function results in the following format, with the `name` field set to "tools", and use the `content` field to contain multiple results.
|
246 |
+
|
247 |
+
|
248 |
+
```json
|
249 |
+
{
|
250 |
+
"data": [
|
251 |
+
{
|
252 |
+
"role": "tool",
|
253 |
+
"name": "tools",
|
254 |
+
"content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
|
255 |
+
}
|
256 |
+
]
|
257 |
+
}
|
258 |
+
```
|
259 |
+
|
260 |
+
Corresponding model input format:
|
261 |
+
```
|
262 |
+
]~b]tool name=tools
|
263 |
+
Tool name: search_web
|
264 |
+
Tool result: test_result1
|
265 |
+
|
266 |
+
Tool name: search_web
|
267 |
+
Tool result: test_result2[e~[
|
268 |
+
```
|
269 |
+
|
270 |
+
While we suggest following the above formats, as long as the model input is easy to understand, the specific values of `name` and `content` is entirely up to the caller.
|
function_call_guide_cn.md
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MiniMax-M1 函数调用(Function Call)功能指南
|
2 |
+
|
3 |
+
## 📖 简介
|
4 |
+
|
5 |
+
MiniMax-M1 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-M1 的函数调用功能。
|
6 |
+
|
7 |
+
## 🚀 快速开始
|
8 |
+
|
9 |
+
### 聊天模板使用
|
10 |
+
|
11 |
+
MiniMax-M1 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中,你可以在代码中通过 template 来进行使用。
|
12 |
+
|
13 |
+
```python
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
|
16 |
+
def get_default_tools():
|
17 |
+
return [
|
18 |
+
{
|
19 |
+
{
|
20 |
+
"name": "get_current_weather",
|
21 |
+
"description": "Get the latest weather for a location",
|
22 |
+
"parameters": {
|
23 |
+
"type": "object",
|
24 |
+
"properties": {
|
25 |
+
"location": {
|
26 |
+
"type": "string",
|
27 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
28 |
+
}
|
29 |
+
},
|
30 |
+
}
|
31 |
+
"required": ["location"],
|
32 |
+
"type": "object"
|
33 |
+
}
|
34 |
+
}
|
35 |
+
]
|
36 |
+
|
37 |
+
# 加载模型和分词器
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
+
prompt = "What's the weather like in Shanghai today?"
|
40 |
+
messages = [
|
41 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
|
42 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
43 |
+
]
|
44 |
+
|
45 |
+
# 启用函数调用工具
|
46 |
+
tools = get_default_tools()
|
47 |
+
|
48 |
+
# 应用聊天模板,并加入工具定义
|
49 |
+
text = tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True,
|
53 |
+
tools=tools
|
54 |
+
)
|
55 |
+
```
|
56 |
+
|
57 |
+
## 🛠️ 函数调用的定义
|
58 |
+
|
59 |
+
### 函数结构体
|
60 |
+
|
61 |
+
函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成:
|
62 |
+
|
63 |
+
```json
|
64 |
+
{
|
65 |
+
"tools": [
|
66 |
+
{
|
67 |
+
"name": "search_web",
|
68 |
+
"description": "搜索函数。",
|
69 |
+
"parameters": {
|
70 |
+
"properties": {
|
71 |
+
"query_list": {
|
72 |
+
"description": "进行搜索的关键词,列表元素个数为1。",
|
73 |
+
"items": { "type": "string" },
|
74 |
+
"type": "array"
|
75 |
+
},
|
76 |
+
"query_tag": {
|
77 |
+
"description": "query的分类",
|
78 |
+
"items": { "type": "string" },
|
79 |
+
"type": "array"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"required": [ "query_list", "query_tag" ],
|
83 |
+
"type": "object"
|
84 |
+
}
|
85 |
+
}
|
86 |
+
]
|
87 |
+
}
|
88 |
+
```
|
89 |
+
|
90 |
+
**字段说明:**
|
91 |
+
- `name`: 函数名称
|
92 |
+
- `description`: 函数功能描述
|
93 |
+
- `parameters`: 函数参数定义
|
94 |
+
- `properties`: 参数属性定义,key 是参数名,value 包含参数的详细描述
|
95 |
+
- `required`: 必填参数列表
|
96 |
+
- `type`: 参数类型(通常为 "object")
|
97 |
+
|
98 |
+
### 模型内部处理格式
|
99 |
+
|
100 |
+
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
|
101 |
+
|
102 |
+
```
|
103 |
+
]~!b[]~b]system ai_setting=海螺AI
|
104 |
+
MiniMax AI是由上海稀宇科技有限公司(MiniMax)自主研发的AI助理。[e~[
|
105 |
+
]~b]system tool_setting=tools
|
106 |
+
You are provided with these tools:
|
107 |
+
<tools>
|
108 |
+
{"name": "search_web", "description": "搜索函数。", "parameters": {"properties": {"query_list": {"description": "进行搜索的关键词,列表元素个数为1。", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "query的分类", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
109 |
+
</tools>
|
110 |
+
|
111 |
+
If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
|
112 |
+
<tool_calls>
|
113 |
+
{"name": <tool-name>, "arguments": <args-json-object>}
|
114 |
+
...
|
115 |
+
</tool_calls>[e~[
|
116 |
+
]~b]user name=用户
|
117 |
+
OpenAI 和 Gemini 的最近一次发布会都是什么时候?[e~[
|
118 |
+
]~b]ai name=海螺AI
|
119 |
+
```
|
120 |
+
|
121 |
+
### 模型输出格式
|
122 |
+
|
123 |
+
模型会以以下格式输出函数调用:
|
124 |
+
|
125 |
+
```xml
|
126 |
+
<think>
|
127 |
+
Okay, I will search for the OpenAI and Gemini latest release.
|
128 |
+
</think>
|
129 |
+
<tool_calls>
|
130 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
|
131 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
|
132 |
+
</tool_calls>
|
133 |
+
```
|
134 |
+
|
135 |
+
## 📥 函数调用结果处理
|
136 |
+
|
137 |
+
### 解析函数调用
|
138 |
+
|
139 |
+
您可以使用以下代码解析模型输出的函数调用:
|
140 |
+
|
141 |
+
```python
|
142 |
+
import re
|
143 |
+
import json
|
144 |
+
|
145 |
+
def parse_function_calls(content: str):
|
146 |
+
"""
|
147 |
+
解析模型输出中的函数调用
|
148 |
+
"""
|
149 |
+
function_calls = []
|
150 |
+
|
151 |
+
# 匹配 <tool_calls> 标签内的内容
|
152 |
+
tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
|
153 |
+
tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
|
154 |
+
|
155 |
+
if not tool_calls_match:
|
156 |
+
return function_calls
|
157 |
+
|
158 |
+
tool_calls_content = tool_calls_match.group(1).strip()
|
159 |
+
|
160 |
+
# 解析每个函数调用(每行一��JSON对象)
|
161 |
+
for line in tool_calls_content.split('\n'):
|
162 |
+
line = line.strip()
|
163 |
+
if not line:
|
164 |
+
continue
|
165 |
+
|
166 |
+
try:
|
167 |
+
# 解析JSON格式的函数调用
|
168 |
+
call_data = json.loads(line)
|
169 |
+
function_name = call_data.get("name")
|
170 |
+
arguments = call_data.get("arguments", {})
|
171 |
+
|
172 |
+
function_calls.append({
|
173 |
+
"name": function_name,
|
174 |
+
"arguments": arguments
|
175 |
+
})
|
176 |
+
|
177 |
+
print(f"调用函数: {function_name}, 参数: {arguments}")
|
178 |
+
|
179 |
+
except json.JSONDecodeError as e:
|
180 |
+
print(f"参数解析失败: {line}, 错误: {e}")
|
181 |
+
|
182 |
+
return function_calls
|
183 |
+
|
184 |
+
# 示例:处理天气查询函数
|
185 |
+
def execute_function_call(function_name: str, arguments: dict):
|
186 |
+
"""
|
187 |
+
执行函数调用并返回结果
|
188 |
+
"""
|
189 |
+
if function_name == "get_current_weather":
|
190 |
+
location = arguments.get("location", "未知位置")
|
191 |
+
# 构建函数执行结果
|
192 |
+
return {
|
193 |
+
"role": "tool",
|
194 |
+
"name": function_name,
|
195 |
+
"content": json.dumps({
|
196 |
+
"location": location,
|
197 |
+
"temperature": "25",
|
198 |
+
"unit": "celsius",
|
199 |
+
"weather": "晴朗"
|
200 |
+
}, ensure_ascii=False)
|
201 |
+
}
|
202 |
+
elif function_name == "search_web":
|
203 |
+
query_list = arguments.get("query_list", [])
|
204 |
+
query_tag = arguments.get("query_tag", [])
|
205 |
+
# 模拟搜索结果
|
206 |
+
return {
|
207 |
+
"role": "tool",
|
208 |
+
"name": function_name,
|
209 |
+
"content": f"搜索关键词: {query_list}, 分类: {query_tag}\n搜索结果: 相关信息已找到"
|
210 |
+
}
|
211 |
+
|
212 |
+
return None
|
213 |
+
```
|
214 |
+
|
215 |
+
### 将函数执行结果返回给模型
|
216 |
+
|
217 |
+
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
|
218 |
+
|
219 |
+
#### 单个结果
|
220 |
+
|
221 |
+
假如模型调用了 `search_web` 函数,您可以参考如下格式添加执行结果,`name` 字段为具体的函数名称。
|
222 |
+
|
223 |
+
```json
|
224 |
+
{
|
225 |
+
"data": [
|
226 |
+
{
|
227 |
+
"role": "tool",
|
228 |
+
"name": "search_web",
|
229 |
+
"content": "search_result"
|
230 |
+
}
|
231 |
+
]
|
232 |
+
}
|
233 |
+
```
|
234 |
+
|
235 |
+
对应如下的模型输入格式:
|
236 |
+
```
|
237 |
+
]~b]tool name=search_web
|
238 |
+
search_result[e~[
|
239 |
+
```
|
240 |
+
|
241 |
+
|
242 |
+
#### 多个结果
|
243 |
+
假如模型同时调用了 `search_web` 和 `get_current_weather` 函数,您可以参考如下格式添加执行结果,`name` 字段为"tools",`content`包含多个结果。
|
244 |
+
|
245 |
+
```json
|
246 |
+
{
|
247 |
+
"data": [
|
248 |
+
{
|
249 |
+
"role": "tool",
|
250 |
+
"name": "tools",
|
251 |
+
"content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
|
252 |
+
}
|
253 |
+
]
|
254 |
+
}
|
255 |
+
```
|
256 |
+
|
257 |
+
对应如下的模型输入格式:
|
258 |
+
```
|
259 |
+
]~b]tool name=tools
|
260 |
+
Tool name: search_web
|
261 |
+
Tool result: test_result1
|
262 |
+
|
263 |
+
Tool name: search_web
|
264 |
+
Tool result: test_result2[e~[
|
265 |
+
```
|
266 |
+
|
267 |
+
虽然我们建议您参考以上格式,但只要返回给模型的输入易于理解,`name` 和 `content` 的具体内容完全由您自主决定。
|
transformers_deployment_guide.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax Model Transformers Deployment Guide
|
2 |
+
|
3 |
+
[Transformers中文版部署指南](./transformers_deployment_guide_cn.md)
|
4 |
+
|
5 |
+
## 📖 Introduction
|
6 |
+
|
7 |
+
This guide will help you deploy the MiniMax-M1 model using the [Transformers](https://huggingface.co/docs/transformers/index) library. Transformers is a widely used deep learning library that provides a rich collection of pre-trained models and flexible model operation interfaces.
|
8 |
+
|
9 |
+
## 🛠️ Environment Setup
|
10 |
+
|
11 |
+
### Installing Transformers
|
12 |
+
|
13 |
+
```bash
|
14 |
+
pip install transformers torch accelerate
|
15 |
+
```
|
16 |
+
|
17 |
+
## 📋 Basic Usage Example
|
18 |
+
|
19 |
+
The pre-trained model can be used as follows:
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
23 |
+
|
24 |
+
MODEL_PATH = "{MODEL_PATH}"
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
27 |
+
|
28 |
+
messages = [
|
29 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
30 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
31 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
32 |
+
]
|
33 |
+
|
34 |
+
text = tokenizer.apply_chat_template(
|
35 |
+
messages,
|
36 |
+
tokenize=False,
|
37 |
+
add_generation_prompt=True
|
38 |
+
)
|
39 |
+
|
40 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
41 |
+
|
42 |
+
generation_config = GenerationConfig(
|
43 |
+
max_new_tokens=20,
|
44 |
+
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
use_cache=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
|
49 |
+
|
50 |
+
generated_ids = [
|
51 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
52 |
+
]
|
53 |
+
|
54 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
55 |
+
print(response)
|
56 |
+
```
|
57 |
+
|
58 |
+
## ⚡ Performance Optimization
|
59 |
+
|
60 |
+
### Speeding up with Flash Attention
|
61 |
+
|
62 |
+
The code snippet above showcases inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
|
63 |
+
|
64 |
+
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
pip install -U flash-attn --no-build-isolation
|
68 |
+
```
|
69 |
+
|
70 |
+
Also make sure that you have hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [Flash Attention repository](https://github.com/Dao-AILab/flash-attention). Additionally, ensure you load your model in half-precision (e.g. `torch.float16`).
|
71 |
+
|
72 |
+
To load and run a model using Flash Attention-2, refer to the snippet below:
|
73 |
+
|
74 |
+
```python
|
75 |
+
import torch
|
76 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
77 |
+
|
78 |
+
MODEL_PATH = "{MODEL_PATH}"
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
81 |
+
|
82 |
+
prompt = "My favourite condiment is"
|
83 |
+
|
84 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
85 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
86 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
87 |
+
print(response)
|
88 |
+
```
|
89 |
+
|
90 |
+
## 📮 Getting Support
|
91 |
+
|
92 |
+
If you encounter any issues while deploying the MiniMax-M1 model:
|
93 |
+
- Please check our official documentation
|
94 |
+
- Contact our technical support team through official channels
|
95 |
+
- Submit an Issue on our GitHub repository
|
96 |
+
|
97 |
+
We continuously optimize the deployment experience on Transformers and welcome your feedback!
|
transformers_deployment_guide_cn.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax 模型 Transformers 部署指南
|
2 |
+
|
3 |
+
## 📖 简介
|
4 |
+
|
5 |
+
本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。
|
6 |
+
|
7 |
+
## 🛠️ 环境准备
|
8 |
+
|
9 |
+
### 安装 Transformers
|
10 |
+
|
11 |
+
```bash
|
12 |
+
pip install transformers torch accelerate
|
13 |
+
```
|
14 |
+
|
15 |
+
## 📋 基本使用示例
|
16 |
+
|
17 |
+
预训练模型可以按照以下方式使用:
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
21 |
+
|
22 |
+
MODEL_PATH = "{MODEL_PATH}"
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
25 |
+
|
26 |
+
messages = [
|
27 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
28 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
29 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
30 |
+
]
|
31 |
+
|
32 |
+
text = tokenizer.apply_chat_template(
|
33 |
+
messages,
|
34 |
+
tokenize=False,
|
35 |
+
add_generation_prompt=True
|
36 |
+
)
|
37 |
+
|
38 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
39 |
+
|
40 |
+
generation_config = GenerationConfig(
|
41 |
+
max_new_tokens=20,
|
42 |
+
eos_token_id=tokenizer.eos_token_id,
|
43 |
+
use_cache=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
|
47 |
+
|
48 |
+
generated_ids = [
|
49 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
50 |
+
]
|
51 |
+
|
52 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
53 |
+
print(response)
|
54 |
+
```
|
55 |
+
|
56 |
+
## ⚡ 性能优化
|
57 |
+
|
58 |
+
### 使用 Flash Attention 加速
|
59 |
+
|
60 |
+
上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。
|
61 |
+
|
62 |
+
首先,确保安装最新版本的 Flash Attention 2 以包含滑动窗口注意力功能:
|
63 |
+
|
64 |
+
```bash
|
65 |
+
pip install -U flash-attn --no-build-isolation
|
66 |
+
```
|
67 |
+
|
68 |
+
还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。
|
69 |
+
|
70 |
+
要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段:
|
71 |
+
|
72 |
+
```python
|
73 |
+
import torch
|
74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
75 |
+
|
76 |
+
MODEL_PATH = "{MODEL_PATH}"
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
79 |
+
|
80 |
+
prompt = "My favourite condiment is"
|
81 |
+
|
82 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
83 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
84 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
85 |
+
print(response)
|
86 |
+
```
|
87 |
+
|
88 |
+
## 📮 获取支持
|
89 |
+
|
90 |
+
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
|
91 |
+
- 请查看我们的官方文档
|
92 |
+
- 通过官方渠道联系我们的技术支持团队
|
93 |
+
- 在我们的 GitHub 仓库提交 Issue
|
94 |
+
|
95 |
+
我们会持续优化 Transformers 上的部署体验,欢迎您的反馈!
|
vllm_deployment_guide.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax Models vLLM Deployment Guide
|
2 |
+
|
3 |
+
[VLLM中文版部署指南](./vllm_deployment_guide_cn.md)
|
4 |
+
|
5 |
+
## 📖 Introduction
|
6 |
+
|
7 |
+
We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to deploy MiniMax-M1 model. Based on our testing, vLLM performs excellently when deploying this model, with the following features:
|
8 |
+
|
9 |
+
- 🔥 Outstanding service throughput performance
|
10 |
+
- ⚡ Efficient and intelligent memory management
|
11 |
+
- 📦 Powerful batch request processing capability
|
12 |
+
- ⚙️ Deeply optimized underlying performance
|
13 |
+
|
14 |
+
The MiniMax-M1 model can run efficiently on a single server equipped with 8 H800 or 8 H20 GPUs. In terms of hardware configuration, a server with 8 H800 GPUs can process context inputs up to 2 million tokens, while a server equipped with 8 H20 GPUs can support ultra-long context processing capabilities of up to 5 million tokens.
|
15 |
+
|
16 |
+
## 💾 Obtaining MiniMax Models
|
17 |
+
|
18 |
+
### MiniMax-M1 Model Obtaining
|
19 |
+
|
20 |
+
You can download the model from our official HuggingFace repository: [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1)
|
21 |
+
|
22 |
+
Download command:
|
23 |
+
```
|
24 |
+
pip install -U huggingface-hub
|
25 |
+
huggingface-cli download MiniMaxAI/MiniMax-M1
|
26 |
+
|
27 |
+
# If you encounter network issues, you can set a proxy
|
28 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
29 |
+
```
|
30 |
+
|
31 |
+
Or download using git:
|
32 |
+
|
33 |
+
```bash
|
34 |
+
git lfs install
|
35 |
+
git clone https://huggingface.co/MiniMaxAI/MiniMax-M1
|
36 |
+
```
|
37 |
+
|
38 |
+
⚠️ **Important Note**: Please ensure that [Git LFS](https://git-lfs.github.com/) is installed on your system, which is necessary for completely downloading the model weight files.
|
39 |
+
|
40 |
+
## 🛠️ Deployment Options
|
41 |
+
|
42 |
+
### Option 1: Deploy Using Docker (Recommended)
|
43 |
+
|
44 |
+
To ensure consistency and stability of the deployment environment, we recommend using Docker for deployment.
|
45 |
+
|
46 |
+
⚠️ **Version Requirements**:
|
47 |
+
- MiniMax-M1 model requires vLLM version 0.8.3 or later for full support
|
48 |
+
- If you are using a Docker image with vLLM version lower than the required version, you will need to:
|
49 |
+
1. Update to the latest vLLM code
|
50 |
+
2. Recompile vLLM from source. Follow the compilation instructions in Solution 2 of the Common Issues section
|
51 |
+
|
52 |
+
1. Get the container image:
|
53 |
+
```bash
|
54 |
+
docker pull vllm/vllm-openai:v0.8.3
|
55 |
+
```
|
56 |
+
|
57 |
+
2. Run the container:
|
58 |
+
```bash
|
59 |
+
# Set environment variables
|
60 |
+
IMAGE=vllm/vllm-openai:v0.8.3
|
61 |
+
MODEL_DIR=<model storage path>
|
62 |
+
CODE_DIR=<code path>
|
63 |
+
NAME=MiniMaxImage
|
64 |
+
|
65 |
+
# Docker run configuration
|
66 |
+
DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
|
67 |
+
|
68 |
+
# Start the container
|
69 |
+
sudo docker run -it \
|
70 |
+
-v $MODEL_DIR:$MODEL_DIR \
|
71 |
+
-v $CODE_DIR:$CODE_DIR \
|
72 |
+
--name $NAME \
|
73 |
+
$DOCKER_RUN_CMD \
|
74 |
+
$IMAGE /bin/bash
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
### Option 2: Direct Installation of vLLM
|
79 |
+
|
80 |
+
If your environment meets the following requirements:
|
81 |
+
|
82 |
+
- CUDA 12.1
|
83 |
+
- PyTorch 2.1
|
84 |
+
|
85 |
+
You can directly install vLLM
|
86 |
+
|
87 |
+
Installation command:
|
88 |
+
```bash
|
89 |
+
pip install vllm
|
90 |
+
```
|
91 |
+
|
92 |
+
💡 If you are using other environment configurations, please refer to the [vLLM Installation Guide](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
93 |
+
|
94 |
+
## 🚀 Starting the Service
|
95 |
+
|
96 |
+
### Launch MiniMax-M1 Service
|
97 |
+
|
98 |
+
```bash
|
99 |
+
export SAFETENSORS_FAST_GPU=1
|
100 |
+
export VLLM_USE_V1=0
|
101 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
102 |
+
--model <model storage path> \
|
103 |
+
--tensor-parallel-size 8 \
|
104 |
+
--trust-remote-code \
|
105 |
+
--quantization experts_int8 \
|
106 |
+
--max_model_len 4096 \
|
107 |
+
--dtype bfloat16
|
108 |
+
```
|
109 |
+
|
110 |
+
### API Call Example
|
111 |
+
|
112 |
+
```bash
|
113 |
+
curl http://localhost:8000/v1/chat/completions \
|
114 |
+
-H "Content-Type: application/json" \
|
115 |
+
-d '{
|
116 |
+
"model": "MiniMaxAI/MiniMax-Text-01",
|
117 |
+
"messages": [
|
118 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
119 |
+
{"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
|
120 |
+
]
|
121 |
+
}'
|
122 |
+
```
|
123 |
+
|
124 |
+
## ❗ Common Issues
|
125 |
+
|
126 |
+
### Module Loading Problems
|
127 |
+
If you encounter the following error:
|
128 |
+
```
|
129 |
+
import vllm._C # noqa
|
130 |
+
ModuleNotFoundError: No module named 'vllm._C'
|
131 |
+
```
|
132 |
+
|
133 |
+
Or
|
134 |
+
|
135 |
+
```
|
136 |
+
MiniMax-M1 model is not currently supported
|
137 |
+
```
|
138 |
+
|
139 |
+
We provide two solutions:
|
140 |
+
|
141 |
+
#### Solution 1: Copy Dependency Files
|
142 |
+
```bash
|
143 |
+
cd <working directory>
|
144 |
+
git clone https://github.com/vllm-project/vllm.git
|
145 |
+
cd vllm
|
146 |
+
cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
|
147 |
+
cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
|
148 |
+
```
|
149 |
+
|
150 |
+
#### Solution 2: Install from Source
|
151 |
+
```bash
|
152 |
+
cd <working directory>
|
153 |
+
git clone https://github.com/vllm-project/vllm.git
|
154 |
+
|
155 |
+
cd vllm/
|
156 |
+
pip install -e .
|
157 |
+
```
|
158 |
+
|
159 |
+
## 📮 Getting Support
|
160 |
+
|
161 |
+
If you encounter any issues while deploying MiniMax-M1 model:
|
162 |
+
- Please check our official documentation
|
163 |
+
- Contact our technical support team through official channels
|
164 |
+
- Submit an [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues) on our GitHub repository
|
165 |
+
|
166 |
+
We will continuously optimize the deployment experience of this model and welcome your feedback!
|
vllm_deployment_guide_cn.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax 模型 vLLM 部署指南
|
2 |
+
|
3 |
+
## 📖 简介
|
4 |
+
|
5 |
+
我们推荐使用 [vLLM](https://docs.vllm.ai/en/latest/) 来部署 [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1) 模型。经过我们的测试,vLLM 在部署这个模型时表现出色,具有以下特点:
|
6 |
+
|
7 |
+
- 🔥 卓越的服务吞吐量性能
|
8 |
+
- ⚡ 高效智能的内存管理机制
|
9 |
+
- 📦 强大的批量请求处理能力
|
10 |
+
- ⚙️ 深度优化的底层性能
|
11 |
+
|
12 |
+
MiniMax-M1 模型可在单台配备8个H800或8个H20 GPU的服务器上高效运行。在硬件配置方面,搭载8个H800 GPU的服务器可处理长达200万token的上下文输入,而配备8个H20 GPU的服务器则能够支持高达500万token的超长上下文处理能力。
|
13 |
+
|
14 |
+
## 💾 获取 MiniMax 模型
|
15 |
+
|
16 |
+
### MiniMax-M1 模型获取
|
17 |
+
|
18 |
+
您可以从我们的官方 HuggingFace 仓库下载模型:[MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1)
|
19 |
+
|
20 |
+
下载命令:
|
21 |
+
```
|
22 |
+
pip install -U huggingface-hub
|
23 |
+
huggingface-cli download MiniMaxAI/MiniMax-M1
|
24 |
+
|
25 |
+
# 如果遇到网络问题,可以设置代理
|
26 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
27 |
+
```
|
28 |
+
|
29 |
+
或者使用 git 下载:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
git lfs install
|
33 |
+
git clone https://huggingface.co/MiniMaxAI/MiniMax-M1
|
34 |
+
```
|
35 |
+
|
36 |
+
⚠️ **重要提示**:请确保系统已安装 [Git LFS](https://git-lfs.github.com/),这对于完整下载模型权重文件是必需的。
|
37 |
+
|
38 |
+
## 🛠️ 部署方案
|
39 |
+
|
40 |
+
### 方案一:使用 Docker 部署(推荐)
|
41 |
+
|
42 |
+
为确保部署环境的一致性和稳定性,我们推荐使用 Docker 进行部署。
|
43 |
+
|
44 |
+
⚠️ **版本要求**:
|
45 |
+
- MiniMax-M1 模型需要 vLLM 0.8.3 或更高版本才能获得完整支持
|
46 |
+
|
47 |
+
1. 获取容器镜像:
|
48 |
+
```bash
|
49 |
+
docker pull vllm/vllm-openai:v0.8.3
|
50 |
+
```
|
51 |
+
|
52 |
+
2. 运行容器:
|
53 |
+
```bash
|
54 |
+
# 设置环境变量
|
55 |
+
IMAGE=vllm/vllm-openai:v0.8.3
|
56 |
+
MODEL_DIR=<模型存放路径>
|
57 |
+
CODE_DIR=<代码路径>
|
58 |
+
NAME=MiniMaxImage
|
59 |
+
|
60 |
+
# Docker运行配置
|
61 |
+
DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
|
62 |
+
|
63 |
+
# 启动容器
|
64 |
+
sudo docker run -it \
|
65 |
+
-v $MODEL_DIR:$MODEL_DIR \
|
66 |
+
-v $CODE_DIR:$CODE_DIR \
|
67 |
+
--name $NAME \
|
68 |
+
$DOCKER_RUN_CMD \
|
69 |
+
$IMAGE /bin/bash
|
70 |
+
```
|
71 |
+
|
72 |
+
|
73 |
+
### 方案二:直接安装 vLLM
|
74 |
+
|
75 |
+
如果您的环境满足以下要求:
|
76 |
+
|
77 |
+
- CUDA 12.1
|
78 |
+
- PyTorch 2.1
|
79 |
+
|
80 |
+
可以直接安装 vLLM
|
81 |
+
|
82 |
+
安装命令:
|
83 |
+
```bash
|
84 |
+
pip install vllm
|
85 |
+
```
|
86 |
+
|
87 |
+
💡 如果您使用其他环境配置,请参考 [vLLM 安装指南](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
88 |
+
|
89 |
+
## 🚀 启动服务
|
90 |
+
|
91 |
+
### 启动 MiniMax-M1 服务
|
92 |
+
|
93 |
+
```bash
|
94 |
+
export SAFETENSORS_FAST_GPU=1
|
95 |
+
export VLLM_USE_V1=0
|
96 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
97 |
+
--model <模型存放路径> \
|
98 |
+
--tensor-parallel-size 8 \
|
99 |
+
--trust-remote-code \
|
100 |
+
--quantization experts_int8 \
|
101 |
+
--max_model_len 4096 \
|
102 |
+
--dtype bfloat16
|
103 |
+
```
|
104 |
+
|
105 |
+
### API 调用示例
|
106 |
+
|
107 |
+
```bash
|
108 |
+
curl http://localhost:8000/v1/chat/completions \
|
109 |
+
-H "Content-Type: application/json" \
|
110 |
+
-d '{
|
111 |
+
"model": "MiniMaxAI/MiniMax-Text-01",
|
112 |
+
"messages": [
|
113 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
114 |
+
{"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
|
115 |
+
]
|
116 |
+
}'
|
117 |
+
```
|
118 |
+
|
119 |
+
## ❗ 常见问题
|
120 |
+
|
121 |
+
### 模块加载问题
|
122 |
+
如果遇到以下错误:
|
123 |
+
```
|
124 |
+
import vllm._C # noqa
|
125 |
+
ModuleNotFoundError: No module named 'vllm._C'
|
126 |
+
```
|
127 |
+
|
128 |
+
或
|
129 |
+
|
130 |
+
```
|
131 |
+
当前并不支持 MiniMax-M1 模型
|
132 |
+
```
|
133 |
+
|
134 |
+
我们提供两种解决方案:
|
135 |
+
|
136 |
+
#### 解决方案一:复制依赖文件
|
137 |
+
```bash
|
138 |
+
cd <工作目录>
|
139 |
+
git clone https://github.com/vllm-project/vllm.git
|
140 |
+
cd vllm
|
141 |
+
cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
|
142 |
+
cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
|
143 |
+
```
|
144 |
+
|
145 |
+
#### 解决方案二:从源码安装
|
146 |
+
```bash
|
147 |
+
cd <工作目录>
|
148 |
+
git clone https://github.com/vllm-project/vllm.git
|
149 |
+
|
150 |
+
cd vllm/
|
151 |
+
pip install -e .
|
152 |
+
```
|
153 |
+
|
154 |
+
## 📮 获取支持
|
155 |
+
|
156 |
+
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
|
157 |
+
- 请查看我们的官方文档
|
158 |
+
- 通过官方渠道联系我们的技术支持团队
|
159 |
+
- 在我们的 GitHub 仓库提交 [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues)
|
160 |
+
|
161 |
+
我们会持续优化模型的部署体验,欢迎您的反馈!
|