# 🚀 MiniMax Model Transformers Deployment Guide [Transformers中文版部署指南](./transformers_deployment_guide_cn.md) ## 📖 Introduction This guide will help you deploy the MiniMax-M1 model using the [Transformers](https://huggingface.co/docs/transformers/index) library. Transformers is a widely used deep learning library that provides a rich collection of pre-trained models and flexible model operation interfaces. ## 🛠️ Environment Setup ### Installing Transformers ```bash pip install transformers torch accelerate ``` ## 📋 Basic Usage Example The pre-trained model can be used as follows: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig MODEL_PATH = "{MODEL_PATH}" model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) messages = [ {"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]}, {"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]}, {"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer(text, return_tensors="pt").to(model.device) generation_config = GenerationConfig( max_new_tokens=20, eos_token_id=tokenizer.eos_token_id, use_cache=True, ) generated_ids = model.generate(**model_inputs, generation_config=generation_config) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## ⚡ Performance Optimization ### Speeding up with Flash Attention The code snippet above showcases inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model. First, make sure to install the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` Also make sure that you have hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [Flash Attention repository](https://github.com/Dao-AILab/flash-attention). Additionally, ensure you load your model in half-precision (e.g. `torch.float16`). To load and run a model using Flash Attention-2, refer to the snippet below: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_PATH = "{MODEL_PATH}" model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) prompt = "My favourite condiment is" model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` ## 📮 Getting Support If you encounter any issues while deploying the MiniMax-M1 model: - Please check our official documentation - Contact our technical support team through official channels - Submit an Issue on our GitHub repository We continuously optimize the deployment experience on Transformers and welcome your feedback!