sriting commited on
Commit
f8a8008
·
1 Parent(s): 87724ce

upload config files

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2025 MiniMax
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "architectures": [
3
- "AbabForCausalLM"
4
  ],
5
  "attention_dropout": 0.0,
6
  "attn_type_list": [
@@ -86,21 +86,24 @@
86
  1
87
  ],
88
  "auto_map": {
89
- "AutoConfig": "configuration_abab.AbabConfig",
90
- "AutoModelForCausalLM": "modeling_abab.AbabForCausalLM"
91
  },
92
- "bos_token_id": 1,
93
- "eos_token_id": 2,
94
  "head_dim": 128,
95
  "hidden_act": "silu",
96
  "hidden_size": 6144,
97
  "initializer_range": 0.02,
98
  "intermediate_size": 9216,
99
  "layernorm_full_attention_alpha": 3.5565588200778455,
 
100
  "layernorm_linear_attention_alpha": 3.5565588200778455,
 
101
  "layernorm_mlp_alpha": 3.5565588200778455,
102
- "max_position_embeddings": 131072,
103
- "model_type": "mixtral",
 
104
  "num_attention_heads": 64,
105
  "num_experts_per_tok": 2,
106
  "num_hidden_layers": 80,
@@ -117,7 +120,8 @@
117
  "shared_moe_mode": "sigmoid",
118
  "sliding_window": null,
119
  "tie_word_embeddings": false,
120
- "transformers_version": "4.49.0",
121
  "use_cache": true,
122
  "vocab_size": 200064
123
  }
 
 
1
  {
2
  "architectures": [
3
+ "MiniMaxM1ForCausalLM"
4
  ],
5
  "attention_dropout": 0.0,
6
  "attn_type_list": [
 
86
  1
87
  ],
88
  "auto_map": {
89
+ "AutoConfig": "configuration_minimax_m1.MiniMaxM1Config",
90
+ "AutoModelForCausalLM": "modeling_minimax_m1.MiniMaxM1ForCausalLM"
91
  },
92
+ "bos_token_id": null,
93
+ "eos_token_id": null,
94
  "head_dim": 128,
95
  "hidden_act": "silu",
96
  "hidden_size": 6144,
97
  "initializer_range": 0.02,
98
  "intermediate_size": 9216,
99
  "layernorm_full_attention_alpha": 3.5565588200778455,
100
+ "layernorm_full_attention_beta": 1.0,
101
  "layernorm_linear_attention_alpha": 3.5565588200778455,
102
+ "layernorm_linear_attention_beta": 1.0,
103
  "layernorm_mlp_alpha": 3.5565588200778455,
104
+ "layernorm_mlp_beta": 1.0,
105
+ "max_position_embeddings": 10240000,
106
+ "model_type": "minimax_m1",
107
  "num_attention_heads": 64,
108
  "num_experts_per_tok": 2,
109
  "num_hidden_layers": 80,
 
120
  "shared_moe_mode": "sigmoid",
121
  "sliding_window": null,
122
  "tie_word_embeddings": false,
123
+ "transformers_version": "4.45.2",
124
  "use_cache": true,
125
  "vocab_size": 200064
126
  }
127
+
configuration_minimax_m1.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ MiniMaxM1 model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class MiniMaxM1Config(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`MiniMaxM1Model`]. It is used to instantiate an
13
+ MiniMaxM1 model according to the specified arguments, defining the model architecture. Instantiating a configuration
14
+ with the defaults will yield a similar configuration to that of the MiniMaxM1.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
17
+ documentation from [`PretrainedConfig`] for more information.
18
+
19
+
20
+ Args:
21
+ vocab_size (`int`, *optional*, defaults to 32000):
22
+ Vocabulary size of the MiniMaxM1 model. Defines the number of different tokens that can be represented by the
23
+ `inputs_ids` passed when calling [`MiniMaxM1Model`]
24
+ hidden_size (`int`, *optional*, defaults to 4096):
25
+ Dimension of the hidden representations.
26
+ intermediate_size (`int`, *optional*, defaults to 14336):
27
+ Dimension of the MLP representations.
28
+ num_hidden_layers (`int`, *optional*, defaults to 32):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ num_key_value_heads (`int`, *optional*, defaults to 8):
33
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
34
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
35
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
36
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
37
+ by meanpooling all the original heads within that group. For more details checkout [this
38
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
39
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
40
+ The non-linear activation function (function or string) in the decoder.
41
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
42
+ The maximum sequence length that this model might ever be used with. MiniMaxM1's sliding window attention
43
+ allows sequence of up to 4096*32 tokens.
44
+ initializer_range (`float`, *optional*, defaults to 0.02):
45
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
46
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
47
+ The epsilon used by the rms normalization layers.
48
+ use_cache (`bool`, *optional*, defaults to `True`):
49
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
50
+ relevant if `config.is_decoder=True`.
51
+ pad_token_id (`int`, *optional*):
52
+ The id of the padding token.
53
+ bos_token_id (`int`, *optional*, defaults to 1):
54
+ The id of the "beginning-of-sequence" token.
55
+ eos_token_id (`int`, *optional*, defaults to 2):
56
+ The id of the "end-of-sequence" token.
57
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
58
+ Whether the model's input and output word embeddings should be tied.
59
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
60
+ The base period of the RoPE embeddings.
61
+ sliding_window (`int`, *optional*):
62
+ Sliding window attention window size. If not specified, will default to `4096`.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the attention probabilities.
65
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
66
+ The number of experts to route per-token, can be also interpreted as the `top-k` routing
67
+ parameter
68
+ num_local_experts (`int`, *optional*, defaults to 8):
69
+ Number of experts per Sparse MLP layer.
70
+ output_router_logits (`bool`, *optional*, defaults to `False`):
71
+ Whether or not the router logits should be returned by the model. Enabeling this will also
72
+ allow the model to output the auxiliary loss. See [here]() for more details
73
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
74
+ The aux loss factor for the total loss.
75
+ router_jitter_noise (`float`, *optional*, defaults to 0.0):
76
+ Amount of noise to add to the router.
77
+
78
+ ```python
79
+ >>> from transformers import MiniMaxM1Model, MiniMaxM1Config
80
+
81
+ >>> # Initializing a MiniMaxM1 style configuration
82
+ >>> configuration = MiniMaxM1Config()
83
+
84
+ >>> # Initializing a model from the MiniMaxM1 style configuration
85
+ >>> model = MiniMaxM1Model(configuration)
86
+
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+ ```"""
90
+
91
+ model_type = "MiniMaxM1"
92
+ keys_to_ignore_at_inference = ["past_key_values"]
93
+
94
+ def __init__(
95
+ self,
96
+ vocab_size=32000,
97
+ hidden_size=4096,
98
+ intermediate_size=14336,
99
+ num_hidden_layers=32,
100
+ num_attention_heads=32,
101
+ num_key_value_heads=8,
102
+ hidden_act="silu",
103
+ max_position_embeddings=4096 * 32,
104
+ initializer_range=0.02,
105
+ rms_norm_eps=1e-5,
106
+ use_cache=True,
107
+ pad_token_id=None,
108
+ bos_token_id=None,
109
+ eos_token_id=None,
110
+ tie_word_embeddings=False,
111
+ rope_theta=1e6,
112
+ sliding_window=None,
113
+ attention_dropout=0.0,
114
+ num_experts_per_tok=2,
115
+ num_local_experts=8,
116
+ output_router_logits=False,
117
+ router_aux_loss_coef=0.001,
118
+ router_jitter_noise=0.0,
119
+ **kwargs,
120
+ ):
121
+ self.vocab_size = vocab_size
122
+ self.max_position_embeddings = max_position_embeddings
123
+ self.hidden_size = hidden_size
124
+ self.intermediate_size = intermediate_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.sliding_window = sliding_window
128
+
129
+ # for backward compatibility
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+
133
+ self.num_key_value_heads = num_key_value_heads
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.use_cache = use_cache
138
+ self.rope_theta = rope_theta
139
+ self.attention_dropout = attention_dropout
140
+
141
+ self.num_experts_per_tok = num_experts_per_tok
142
+ self.num_local_experts = num_local_experts
143
+ self.output_router_logits = output_router_logits
144
+ self.router_aux_loss_coef = router_aux_loss_coef
145
+ self.router_jitter_noise = router_jitter_noise
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
function_call_guide.md ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MiniMax-M1 Function Call Guide
2
+
3
+ [FunctionCall中文使用指南](./function_call_guide_cn.md)
4
+
5
+ ## 📖 Introduction
6
+
7
+ The MiniMax-M1 model supports function calling capabilities, enabling the model to identify when external functions need to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-M1.
8
+
9
+ ## 🚀 Quick Start
10
+
11
+ ### Using Chat Template
12
+
13
+ MiniMax-M1 uses a specific chat template format to handle function calls. The chat template is defined in `tokenizer_config.json`, and you can use it in your code through the template.
14
+
15
+ ```python
16
+ from transformers import AutoTokenizer
17
+
18
+ def get_default_tools():
19
+ return [
20
+ {
21
+ {
22
+ "name": "get_current_weather",
23
+ "description": "Get the latest weather for a location",
24
+ "parameters": {
25
+ "type": "object",
26
+ "properties": {
27
+ "location": {
28
+ "type": "string",
29
+ "description": "A certain city, such as Beijing, Shanghai"
30
+ }
31
+ },
32
+ }
33
+ "required": ["location"],
34
+ "type": "object"
35
+ }
36
+ }
37
+ ]
38
+
39
+ # Load model and tokenizer
40
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
41
+ prompt = "What's the weather like in Shanghai today?"
42
+ messages = [
43
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-M1 model."}]},
44
+ {"role": "user", "content": [{"type": "text", "text": prompt}]},
45
+ ]
46
+
47
+ # Enable function call tools
48
+ tools = get_default_tools()
49
+
50
+ # Apply chat template and add tool definitions
51
+ text = tokenizer.apply_chat_template(
52
+ messages,
53
+ tokenize=False,
54
+ add_generation_prompt=True,
55
+ tools=tools
56
+ )
57
+ ```
58
+
59
+ ## 🛠️ Function Call Definition
60
+
61
+ ### Function Structure
62
+
63
+ Function calls need to be defined in the `tools` field of the request body. Each function consists of the following components:
64
+
65
+ ```json
66
+ {
67
+ "tools": [
68
+ {
69
+ "name": "search_web",
70
+ "description": "Search function.",
71
+ "parameters": {
72
+ "properties": {
73
+ "query_list": {
74
+ "description": "Keywords for search, with list element count of 1.",
75
+ "items": { "type": "string" },
76
+ "type": "array"
77
+ },
78
+ "query_tag": {
79
+ "description": "Classification of the query",
80
+ "items": { "type": "string" },
81
+ "type": "array"
82
+ }
83
+ },
84
+ "required": [ "query_list", "query_tag" ],
85
+ "type": "object"
86
+ }
87
+ }
88
+ ]
89
+ }
90
+ ```
91
+
92
+ **Field Descriptions:**
93
+ - `name`: Function name
94
+ - `description`: Function description
95
+ - `parameters`: Function parameter definition
96
+ - `properties`: Parameter property definitions, where key is the parameter name and value contains detailed parameter description
97
+ - `required`: List of required parameters
98
+ - `type`: Parameter type (usually "object")
99
+
100
+ ### Internal Model Processing Format
101
+
102
+ When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
103
+
104
+ ```
105
+ ]~!b[]~b]system ai_setting=MiniMax AI
106
+ MiniMax AI is an AI assistant independently developed by MiniMax. [e~[
107
+ ]~b]system tool_setting=tools
108
+ You are provided with these tools:
109
+ <tools>
110
+ {"name": "search_web", "description": "Search function.", "parameters": {"properties": {"query_list": {"description": "Keywords for search, with list element count of 1.", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "Classification of the query", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
111
+ </tools>
112
+
113
+ If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
114
+ <tool_calls>
115
+ {"name": <tool-name>, "arguments": <args-json-object>}
116
+ ...
117
+ </tool_calls>[e~[
118
+ ]~b]user name=User
119
+ When were the most recent launch events for OpenAI and Gemini?[e~[
120
+ ]~b]ai name=MiniMax AI
121
+ ```
122
+
123
+ ### Model Output Format
124
+
125
+ The model outputs function calls in the following format:
126
+
127
+ ```xml
128
+ <think>
129
+ Okay, I will search for the OpenAI and Gemini latest release.
130
+ </think>
131
+ <tool_calls>
132
+ {"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
133
+ {"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
134
+ </tool_calls>
135
+ ```
136
+
137
+ ## 📥 Function Call Result Processing
138
+
139
+ ### Parsing Function Calls
140
+
141
+ You can use the following code to parse function calls from the model output:
142
+
143
+ ```python
144
+ import re
145
+ import json
146
+
147
+ def parse_function_calls(content: str):
148
+ """
149
+ Parse function calls from model output
150
+ """
151
+ function_calls = []
152
+
153
+ # Match content within <tool_calls> tags
154
+ tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
155
+ tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
156
+
157
+ if not tool_calls_match:
158
+ return function_calls
159
+
160
+ tool_calls_content = tool_calls_match.group(1).strip()
161
+
162
+ # Parse each function call (one JSON object per line)
163
+ for line in tool_calls_content.split('\n'):
164
+ line = line.strip()
165
+ if not line:
166
+ continue
167
+
168
+ try:
169
+ # Parse JSON format function call
170
+ call_data = json.loads(line)
171
+ function_name = call_data.get("name")
172
+ arguments = call_data.get("arguments", {})
173
+
174
+ function_calls.append({
175
+ "name": function_name,
176
+ "arguments": arguments
177
+ })
178
+
179
+ print(f"Function call: {function_name}, Arguments: {arguments}")
180
+
181
+ except json.JSONDecodeError as e:
182
+ print(f"Parameter parsing failed: {line}, Error: {e}")
183
+
184
+ return function_calls
185
+
186
+ # Example: Handle weather query function
187
+ def execute_function_call(function_name: str, arguments: dict):
188
+ """
189
+ Execute function call and return result
190
+ """
191
+ if function_name == "get_current_weather":
192
+ location = arguments.get("location", "Unknown location")
193
+ # Build function execution result
194
+ return {
195
+ "role": "tool",
196
+ "name": function_name,
197
+ "content": json.dumps({
198
+ "location": location,
199
+ "temperature": "25",
200
+ "unit": "celsius",
201
+ "weather": "Sunny"
202
+ }, ensure_ascii=False)
203
+ }
204
+ elif function_name == "search_web":
205
+ query_list = arguments.get("query_list", [])
206
+ query_tag = arguments.get("query_tag", [])
207
+ # Simulate search results
208
+ return {
209
+ "role": "tool",
210
+ "name": function_name,
211
+ "content": f"Search keywords: {query_list}, Categories: {query_tag}\nSearch results: Relevant information found"
212
+ }
213
+
214
+ return None
215
+ ```
216
+
217
+ ### Returning Function Execution Results to the Model
218
+
219
+ After successfully parsing function calls, you should add the function execution results to the conversation history so that the model can access and utilize this information in subsequent interactions.
220
+
221
+ #### Single Result
222
+
223
+ If the model decides to call `search_web`, we suggest you to return the function result in the following format, with the `name` field set to the specific tool name.
224
+
225
+ ```json
226
+ {
227
+ "data": [
228
+ {
229
+ "role": "tool",
230
+ "name": "search_web",
231
+ "content": "search_result"
232
+ }
233
+ ]
234
+ }
235
+ ```
236
+
237
+ Corresponding model input format:
238
+ ```
239
+ ]~b]tool name=search_web
240
+ search_result[e~[
241
+ ```
242
+
243
+
244
+ #### Multiple Result
245
+ If the model decides to call `search_web` and `get_current_weather` at the same time, we suggest you to return the multiple function results in the following format, with the `name` field set to "tools", and use the `content` field to contain multiple results.
246
+
247
+
248
+ ```json
249
+ {
250
+ "data": [
251
+ {
252
+ "role": "tool",
253
+ "name": "tools",
254
+ "content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
255
+ }
256
+ ]
257
+ }
258
+ ```
259
+
260
+ Corresponding model input format:
261
+ ```
262
+ ]~b]tool name=tools
263
+ Tool name: search_web
264
+ Tool result: test_result1
265
+
266
+ Tool name: get_current_weather
267
+ Tool result: test_result2[e~[
268
+ ```
269
+
270
+ While we suggest following the above formats, as long as the model input is easy to understand, the specific values of `name` and `content` is entirely up to the caller.
function_call_guide_cn.md ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MiniMax-M1 函数调用(Function Call)功能指南
2
+
3
+ ## 📖 简介
4
+
5
+ MiniMax-M1 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-M1 的函数调用功能。
6
+
7
+ ## 🚀 快速开始
8
+
9
+ ### 聊天模板使用
10
+
11
+ MiniMax-M1 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中,你可以在代码中通过 template 来进行使用。
12
+
13
+ ```python
14
+ from transformers import AutoTokenizer
15
+
16
+ def get_default_tools():
17
+ return [
18
+ {
19
+ {
20
+ "name": "get_current_weather",
21
+ "description": "Get the latest weather for a location",
22
+ "parameters": {
23
+ "type": "object",
24
+ "properties": {
25
+ "location": {
26
+ "type": "string",
27
+ "description": "A certain city, such as Beijing, Shanghai"
28
+ }
29
+ },
30
+ }
31
+ "required": ["location"],
32
+ "type": "object"
33
+ }
34
+ }
35
+ ]
36
+
37
+ # 加载模型和分词器
38
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
39
+ prompt = "What's the weather like in Shanghai today?"
40
+ messages = [
41
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-M1 model."}]},
42
+ {"role": "user", "content": [{"type": "text", "text": prompt}]},
43
+ ]
44
+
45
+ # 启用函数调用工具
46
+ tools = get_default_tools()
47
+
48
+ # 应用聊天模板,并加入工具定义
49
+ text = tokenizer.apply_chat_template(
50
+ messages,
51
+ tokenize=False,
52
+ add_generation_prompt=True,
53
+ tools=tools
54
+ )
55
+ ```
56
+
57
+ ## 🛠️ 函数调用的定义
58
+
59
+ ### 函数结构体
60
+
61
+ 函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成:
62
+
63
+ ```json
64
+ {
65
+ "tools": [
66
+ {
67
+ "name": "search_web",
68
+ "description": "搜索函数。",
69
+ "parameters": {
70
+ "properties": {
71
+ "query_list": {
72
+ "description": "进行搜索的关键词,列表元素个数为1。",
73
+ "items": { "type": "string" },
74
+ "type": "array"
75
+ },
76
+ "query_tag": {
77
+ "description": "query的分类",
78
+ "items": { "type": "string" },
79
+ "type": "array"
80
+ }
81
+ },
82
+ "required": [ "query_list", "query_tag" ],
83
+ "type": "object"
84
+ }
85
+ }
86
+ ]
87
+ }
88
+ ```
89
+
90
+ **字段说明:**
91
+ - `name`: 函数名称
92
+ - `description`: 函数功能描述
93
+ - `parameters`: 函数参数定义
94
+ - `properties`: 参数属性定义,key 是参数名,value 包含参数的详细描述
95
+ - `required`: 必填参数列表
96
+ - `type`: 参数类型(通常为 "object")
97
+
98
+ ### 模型内部处理格式
99
+
100
+ 在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
101
+
102
+ ```
103
+ ]~!b[]~b]system ai_setting=MiniMax AI
104
+ MiniMax AI是由上海稀宇科技有限公司(MiniMax)自主研发的AI助理。[e~[
105
+ ]~b]system tool_setting=tools
106
+ You are provided with these tools:
107
+ <tools>
108
+ {"name": "search_web", "description": "搜索函数。", "parameters": {"properties": {"query_list": {"description": "进行搜索的关键词,列表元素个数为1。", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "query的分类", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
109
+ </tools>
110
+
111
+ If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
112
+ <tool_calls>
113
+ {"name": <tool-name>, "arguments": <args-json-object>}
114
+ ...
115
+ </tool_calls>[e~[
116
+ ]~b]user name=用户
117
+ OpenAI 和 Gemini 的最近一次发布会都是什么时候?[e~[
118
+ ]~b]ai name=MiniMax AI
119
+ ```
120
+
121
+ ### 模型输出格式
122
+
123
+ 模型会以以下格式输出函数调用:
124
+
125
+ ```xml
126
+ <think>
127
+ Okay, I will search for the OpenAI and Gemini latest release.
128
+ </think>
129
+ <tool_calls>
130
+ {"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
131
+ {"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
132
+ </tool_calls>
133
+ ```
134
+
135
+ ## 📥 函数调用结果处理
136
+
137
+ ### 解析函数调用
138
+
139
+ 您可以使用以下代码解析模型输出的函数调用:
140
+
141
+ ```python
142
+ import re
143
+ import json
144
+
145
+ def parse_function_calls(content: str):
146
+ """
147
+ 解析模型输出中的函数调用
148
+ """
149
+ function_calls = []
150
+
151
+ # 匹配 <tool_calls> 标签内的内容
152
+ tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
153
+ tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
154
+
155
+ if not tool_calls_match:
156
+ return function_calls
157
+
158
+ tool_calls_content = tool_calls_match.group(1).strip()
159
+
160
+ # 解析每个函数调用(每行一个JSON对象)
161
+ for line in tool_calls_content.split('\n'):
162
+ line = line.strip()
163
+ if not line:
164
+ continue
165
+
166
+ try:
167
+ # 解析JSON格式的函数调用
168
+ call_data = json.loads(line)
169
+ function_name = call_data.get("name")
170
+ arguments = call_data.get("arguments", {})
171
+
172
+ function_calls.append({
173
+ "name": function_name,
174
+ "arguments": arguments
175
+ })
176
+
177
+ print(f"调用函数: {function_name}, 参数: {arguments}")
178
+
179
+ except json.JSONDecodeError as e:
180
+ print(f"参数解析失败: {line}, 错误: {e}")
181
+
182
+ return function_calls
183
+
184
+ # 示例:处理天气查询函数
185
+ def execute_function_call(function_name: str, arguments: dict):
186
+ """
187
+ 执行函数调用并返回结果
188
+ """
189
+ if function_name == "get_current_weather":
190
+ location = arguments.get("location", "未知位置")
191
+ # 构建函数执行结果
192
+ return {
193
+ "role": "tool",
194
+ "name": function_name,
195
+ "content": json.dumps({
196
+ "location": location,
197
+ "temperature": "25",
198
+ "unit": "celsius",
199
+ "weather": "晴朗"
200
+ }, ensure_ascii=False)
201
+ }
202
+ elif function_name == "search_web":
203
+ query_list = arguments.get("query_list", [])
204
+ query_tag = arguments.get("query_tag", [])
205
+ # 模拟搜索结果
206
+ return {
207
+ "role": "tool",
208
+ "name": function_name,
209
+ "content": f"搜索关键词: {query_list}, 分类: {query_tag}\n搜索结果: 相关信息已找到"
210
+ }
211
+
212
+ return None
213
+ ```
214
+
215
+ ### 将函数执行结果返回给模型
216
+
217
+ 成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
218
+
219
+ #### 单个结果
220
+
221
+ 假如模型调用了 `search_web` 函数,您可以参考如下格式添加执行结果,`name` 字段为具体的函数名称。
222
+
223
+ ```json
224
+ {
225
+ "data": [
226
+ {
227
+ "role": "tool",
228
+ "name": "search_web",
229
+ "content": "search_result"
230
+ }
231
+ ]
232
+ }
233
+ ```
234
+
235
+ 对应如下的模型输入格式:
236
+ ```
237
+ ]~b]tool name=search_web
238
+ search_result[e~[
239
+ ```
240
+
241
+
242
+ #### 多个结果
243
+ 假如模型同时调用了 `search_web` 和 `get_current_weather` 函数,您可以参考如下格式添加执行结果,`name` 字段为"tools",`content`包含多个结果。
244
+
245
+ ```json
246
+ {
247
+ "data": [
248
+ {
249
+ "role": "tool",
250
+ "name": "tools",
251
+ "content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
252
+ }
253
+ ]
254
+ }
255
+ ```
256
+
257
+ 对应如下的模型输入格式:
258
+ ```
259
+ ]~b]tool name=tools
260
+ Tool name: search_web
261
+ Tool result: test_result1
262
+
263
+ Tool name: get_current_weather
264
+ Tool result: test_result2[e~[
265
+ ```
266
+
267
+ 虽然我们建议您参考以上格式,但只要返回给模型的输入易于理解,`name` 和 `content` 的具体内容完全由您自主决定。
main.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig
2
+ import torch
3
+ import argparse
4
+
5
+ """
6
+ usage:
7
+ export SAFETENSORS_FAST_GPU=1
8
+ python main.py --quant_type int8 --world_size 8 --model_id <model_path>
9
+ """
10
+
11
+ def generate_quanto_config(hf_config: AutoConfig, quant_type: str):
12
+ QUANT_TYPE_MAP = {
13
+ "default": None,
14
+ "int8": QuantoConfig(
15
+ weights="int8",
16
+ modules_to_not_convert=[
17
+ "lm_head",
18
+ "embed_tokens",
19
+ ] + [f"model.layers.{i}.coefficient" for i in range(hf_config.num_hidden_layers)]
20
+ + [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.num_hidden_layers)]
21
+ ),
22
+ }
23
+ return QUANT_TYPE_MAP[quant_type]
24
+
25
+
26
+ def parse_args():
27
+ parser = argparse.ArgumentParser()
28
+ parser.add_argument("--quant_type", type=str, default="default", choices=["default", "int8"])
29
+ parser.add_argument("--model_id", type=str, required=True)
30
+ parser.add_argument("--world_size", type=int, required=True)
31
+ return parser.parse_args()
32
+
33
+
34
+ def check_params(args, hf_config: AutoConfig):
35
+ if args.quant_type == "int8":
36
+ assert args.world_size >= 8, "int8 weight-only quantization requires at least 8 GPUs"
37
+
38
+ assert hf_config.num_hidden_layers % args.world_size == 0, f"num_hidden_layers({hf_config.num_hidden_layers}) must be divisible by world_size({args.world_size})"
39
+
40
+
41
+ @torch.no_grad()
42
+ def main():
43
+ args = parse_args()
44
+ print("\n=============== Argument ===============")
45
+ for key in vars(args):
46
+ print(f"{key}: {vars(args)[key]}")
47
+ print("========================================")
48
+
49
+ model_id = args.model_id
50
+
51
+ hf_config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
52
+ check_params(args, hf_config)
53
+ quantization_config = generate_quanto_config(hf_config, args.quant_type)
54
+
55
+ device_map = {
56
+ 'model.embed_tokens': 'cuda:0',
57
+ 'model.norm': f'cuda:{args.world_size - 1}',
58
+ 'lm_head': f'cuda:{args.world_size - 1}'
59
+ }
60
+ layers_per_device = hf_config.num_hidden_layers // args.world_size
61
+ for i in range(args.world_size):
62
+ for j in range(layers_per_device):
63
+ device_map[f'model.layers.{i * layers_per_device + j}'] = f'cuda:{i}'
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
66
+ message = [
67
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
68
+ {"role": "user", "content": [{"type": "text", "text": "Hello, what is the weather today?"}]}
69
+ ]
70
+ tools = [
71
+ {"name": "get_location", "description": "Get the location of the user.", "parameters": {"type": "object", "properties": {}}},
72
+ {"name": "get_weather", "description": "Get the weather of a city.", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The name of the city"}}}},
73
+ {"name": "get_news", "description": "Get the news.", "parameters": {"type": "object", "properties": {"domain": {"type": "string", "description": "The domain of the news"}}}}
74
+ ]
75
+ text = tokenizer.apply_chat_template(
76
+ message,
77
+ tools,
78
+ tokenize=False,
79
+ add_generation_prompt=True
80
+ )
81
+ model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
82
+ quantized_model = AutoModelForCausalLM.from_pretrained(
83
+ model_id,
84
+ torch_dtype="bfloat16",
85
+ device_map=device_map,
86
+ quantization_config=quantization_config,
87
+ trust_remote_code=True,
88
+ offload_buffers=True,
89
+ )
90
+ generation_config = GenerationConfig(
91
+ max_new_tokens=20,
92
+ eos_token_id=200020,
93
+ use_cache=True,
94
+ )
95
+ generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
96
+ print(f"generated_ids: {generated_ids}")
97
+ generated_ids = [
98
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
99
+ ]
100
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
101
+ print(response)
102
+
103
+ if __name__ == "__main__":
104
+ main()
105
+
106
+
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_minimax_m1.py ADDED
@@ -0,0 +1,1701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch MiniMaxM1 model."""
2
+ import inspect
3
+ import math
4
+ import warnings
5
+ from typing import List, Optional, Tuple, Union
6
+ import os
7
+ import copy
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
13
+ from einops import rearrange, repeat
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache, DynamicCache
16
+ from transformers.modeling_attn_mask_utils import (
17
+ _prepare_4d_causal_attention_mask,
18
+ )
19
+ from transformers.modeling_outputs import (
20
+ MoeCausalLMOutputWithPast,
21
+ MoeModelOutputWithPast,
22
+ SequenceClassifierOutputWithPast,
23
+ )
24
+ from transformers.modeling_utils import PreTrainedModel
25
+ from transformers.utils import (
26
+ add_start_docstrings,
27
+ add_start_docstrings_to_model_forward,
28
+ is_flash_attn_2_available,
29
+ is_flash_attn_greater_or_equal_2_10,
30
+ logging,
31
+ replace_return_docstrings,
32
+ )
33
+ from transformers.utils.import_utils import is_torch_fx_available
34
+ from .configuration_minimax_m1 import MiniMaxM1Config
35
+
36
+ if is_flash_attn_2_available():
37
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
38
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
39
+
40
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
41
+
42
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
43
+ # It means that the function will not be traced through and simply appear as a node in the graph.
44
+ if is_torch_fx_available():
45
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
46
+
47
+ use_triton = eval(os.environ.get("use_triton", default="False"))
48
+ debug = eval(os.environ.get("debug", default="False"))
49
+ do_eval = eval(os.environ.get("do_eval", default="False"))
50
+ eval_and_not_generate = eval(os.environ.get("eval_and_not_generate", default="False"))
51
+ BLOCK = 256
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CONFIG_FOR_DOC = "MiniMaxM1Config"
56
+
57
+
58
+ def get_activation_fn(activation):
59
+ if debug:
60
+ logger.info(f"activation: {activation}")
61
+ if activation == "gelu":
62
+ return F.gelu
63
+ elif activation == "relu":
64
+ return F.relu
65
+ elif activation == "elu":
66
+ return F.elu
67
+ elif activation == "sigmoid":
68
+ return F.sigmoid
69
+ elif activation == "exp":
70
+
71
+ def f(x):
72
+ with torch.no_grad():
73
+ x_max = torch.max(x, dim=-1, keepdims=True).values
74
+ y = torch.exp(x - x_max)
75
+
76
+ return y
77
+
78
+ return f
79
+ elif activation == "leak":
80
+ return F.leaky_relu
81
+ elif activation == "1+elu":
82
+
83
+ def f(x):
84
+ return 1 + F.elu(x)
85
+
86
+ return f
87
+ elif activation == "2+elu":
88
+
89
+ def f(x):
90
+ return 2 + F.elu(x)
91
+
92
+ return f
93
+ elif activation == "silu" or activation == "swish":
94
+ return F.silu
95
+ elif activation == "sine":
96
+ return torch.sin
97
+ else:
98
+ logger.info(
99
+ f"activation: does not support {activation}, use Identity!!!")
100
+ return lambda x: x
101
+
102
+
103
+ def load_balancing_loss_func(
104
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2,
105
+ attention_mask: Optional[torch.Tensor] = None
106
+ ) -> float:
107
+ r"""
108
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
109
+
110
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
111
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
112
+ experts is too unbalanced.
113
+
114
+ Args:
115
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
116
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
117
+ shape [batch_size X sequence_length, num_experts].
118
+ attention_mask (`torch.Tensor`, None):
119
+ The attention_mask used in forward function
120
+ shape [batch_size X sequence_length] if not None.
121
+ num_experts (`int`, *optional*):
122
+ Number of experts
123
+
124
+ Returns:
125
+ The auxiliary loss.
126
+ """
127
+ if gate_logits is None or not isinstance(gate_logits, tuple):
128
+ return 0
129
+
130
+ if isinstance(gate_logits, tuple):
131
+ compute_device = gate_logits[0].device
132
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
133
+
134
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
135
+
136
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
137
+
138
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
139
+
140
+ if attention_mask is None:
141
+ # Compute the percentage of tokens routed to each experts
142
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
143
+
144
+ # Compute the average probability of routing to these experts
145
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
146
+ else:
147
+ batch_size, sequence_length = attention_mask.shape
148
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
149
+
150
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
151
+ expert_attention_mask = (
152
+ attention_mask[None, :, :, None, None]
153
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
154
+ .reshape(-1, top_k, num_experts)
155
+ .to(compute_device)
156
+ )
157
+
158
+ # Compute the percentage of tokens routed to each experts
159
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
160
+ expert_attention_mask, dim=0
161
+ )
162
+
163
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
164
+ router_per_expert_attention_mask = (
165
+ attention_mask[None, :, :, None]
166
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
167
+ .reshape(-1, num_experts)
168
+ .to(compute_device)
169
+ )
170
+
171
+ # Compute the average probability of routing to these experts
172
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
173
+ router_per_expert_attention_mask, dim=0
174
+ )
175
+
176
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
177
+ return overall_loss * num_experts
178
+
179
+
180
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
181
+ def _get_unpad_data(attention_mask):
182
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
183
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
184
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
185
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
186
+ return (
187
+ indices,
188
+ cu_seqlens,
189
+ max_seqlen_in_batch,
190
+ )
191
+
192
+
193
+ class GLU(nn.Module):
194
+
195
+ def __init__(self, d1, d2, bias=False):
196
+ super().__init__()
197
+
198
+ self.l1 = nn.Linear(d1, d2, bias=bias)
199
+ self.l2 = nn.Linear(d1, d2, bias=bias)
200
+ self.l3 = nn.Linear(d2, d1, bias=bias)
201
+
202
+ def forward(self, x):
203
+ o1 = self.l1(x)
204
+ o2 = self.l2(x)
205
+ output = o1 * o2
206
+ output = self.l3(output)
207
+ return output
208
+
209
+
210
+ class MiniMaxM1LightningAttention(nn.Module):
211
+ def __init__(self, config: MiniMaxM1Config, layer_idx: Optional[int] = None):
212
+ super().__init__()
213
+ bias = False
214
+ self.hidden_size = config.hidden_size
215
+ self.num_heads = config.num_attention_heads
216
+ self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
217
+
218
+ self.out_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=bias)
219
+ self.act = get_activation_fn(config.hidden_act)
220
+ self.norm = MiniMaxM1RMSNorm(self.head_dim * self.num_heads)
221
+
222
+ self.qkv_proj = nn.Linear(self.hidden_size, 3 * self.head_dim * self.num_heads, bias=bias)
223
+ self.output_gate = nn.Linear(self.hidden_size, self.head_dim * self.num_heads, bias=bias)
224
+
225
+ # for inference only
226
+ self.offset = 0
227
+ self.layer_idx = layer_idx
228
+
229
+ def forward(
230
+ self,
231
+ hidden_states,
232
+ attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
233
+ output_attentions: bool = False,
234
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
235
+ use_cache: bool = False,
236
+ slope_rate: Optional[torch.Tensor] = None,
237
+ **kwargs
238
+ ):
239
+ if (not self.training) and (not do_eval):
240
+ return self.inference(
241
+ hidden_states,
242
+ attn_mask,
243
+ output_attentions,
244
+ past_key_value,
245
+ use_cache,
246
+ slope_rate,
247
+ )
248
+
249
+ def inference(
250
+ self,
251
+ x,
252
+ attn_mask: Optional[torch.Tensor] = None, # (b, n)
253
+ output_attentions: bool = False,
254
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
255
+ use_cache: bool = False,
256
+ slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
257
+ ):
258
+ # x: b n d
259
+ b, n, d = x.shape
260
+ # linear map
261
+ qkv = self.act(self.qkv_proj(x))
262
+ new_shape = qkv.size()[:-1] + (self.num_heads, -1)
263
+ qkv = qkv.view(*new_shape)
264
+ q, k, v = torch.split(qkv, [self.head_dim] * 3, dim=3)
265
+ q = q.transpose(1, 2)
266
+ k = k.transpose(1, 2)
267
+ v = v.transpose(1, 2)
268
+
269
+ if past_key_value is None:
270
+ self.offset = q.shape[-2]
271
+ else:
272
+ self.offset += 1
273
+
274
+ # for align with metaseq
275
+ ratio = torch.exp(-slope_rate)
276
+
277
+ # only use for the first time
278
+ if past_key_value is None:
279
+ slope_rate = slope_rate.to(torch.float32)
280
+ if attn_mask is not None:
281
+ v = v.masked_fill((1 - attn_mask).unsqueeze(1).unsqueeze(-1).to(torch.bool), 0)
282
+ NUM_BLOCK = (n + BLOCK - 1) // BLOCK
283
+ b, h, n, d = q.shape
284
+ e = v.shape[-1]
285
+ # other
286
+ array = torch.arange(BLOCK).to(q) + 1
287
+ q_decay = torch.exp(-slope_rate * array.reshape(-1, 1))
288
+ k_decay = torch.exp(-slope_rate * (BLOCK - array.reshape(-1, 1)))
289
+ index = array[:, None] - array[None, :]
290
+ s_index = slope_rate * index[
291
+ None,
292
+ None,
293
+ ]
294
+ s_index = torch.where(index >= 0, -s_index, float("-inf"))
295
+ diag_decay = torch.exp(s_index)
296
+
297
+ kv = torch.zeros(b, h, d, e).to(torch.float32).to(q.device)
298
+ output = torch.empty((b, h, n, e), dtype=q.dtype, device=q.device)
299
+ for i in range(NUM_BLOCK):
300
+ si = i * BLOCK
301
+ ei = min(si + BLOCK, n)
302
+ m = ei - si
303
+ qi = q[:, :, si:ei].contiguous()
304
+ ki = k[:, :, si:ei].contiguous()
305
+ vi = v[:, :, si:ei].contiguous()
306
+ qkv_none_diag = torch.matmul(qi * q_decay[:, :m], kv).to(torch.float32)
307
+
308
+ # diag
309
+ qk = torch.matmul(qi, ki.transpose(-1, -2)).to(torch.float32) * diag_decay[:, :, :m, :m]
310
+ qkv_diag = torch.matmul(qk, vi.to(torch.float32))
311
+ block_decay = torch.exp(-slope_rate * m)
312
+ output[:, :, si:ei] = qkv_none_diag + qkv_diag
313
+ kv = block_decay * kv + torch.matmul((ki * k_decay[:, -m:]).transpose(-1, -2).to(vi.dtype), vi)
314
+
315
+ else:
316
+ kv = past_key_value
317
+ output = []
318
+ for i in range(n):
319
+ kv = ratio * kv + torch.einsum(
320
+ "... n d, ... n e -> ... d e",
321
+ k[:, :, i:i + 1],
322
+ v[:, :, i:i + 1],
323
+ )
324
+ qkv = torch.einsum("... n e, ... e d -> ... n d", q[:, :, i:i + 1], kv.to(q.dtype))
325
+ output.append(qkv)
326
+ output = torch.concat(output, dim=-2)
327
+ # reshape
328
+ output = rearrange(output, "b h n d -> b n (h d)")
329
+ # normalize
330
+ output = self.norm(output)
331
+ # gate
332
+ output = F.sigmoid(self.output_gate(x)) * output
333
+ # outproj
334
+ output = self.out_proj(output)
335
+
336
+ attn_weights = None
337
+
338
+ return output, attn_weights, kv
339
+
340
+
341
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MiniMaxM1
342
+ class MiniMaxM1RMSNorm(nn.Module):
343
+ def __init__(self, hidden_size, eps=1e-6):
344
+ """
345
+ MiniMaxM1RMSNorm is equivalent to T5LayerNorm
346
+ """
347
+ super().__init__()
348
+ self.weight = nn.Parameter(torch.ones(hidden_size))
349
+ self.variance_epsilon = eps
350
+
351
+ def forward(self, hidden_states):
352
+ input_dtype = hidden_states.dtype
353
+ hidden_states = hidden_states.to(torch.float32)
354
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
355
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
356
+ return self.weight * hidden_states.to(input_dtype)
357
+
358
+
359
+ # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->MiniMaxM1
360
+ class MiniMaxM1RotaryEmbedding(nn.Module):
361
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
362
+ super().__init__()
363
+
364
+ self.dim = dim
365
+ self.max_position_embeddings = max_position_embeddings
366
+ self.base = base
367
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
368
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
369
+
370
+ # Build here to make `torch.jit.trace` work.
371
+ self._set_cos_sin_cache(
372
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
373
+ )
374
+
375
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
376
+ self.max_seq_len_cached = seq_len
377
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
378
+
379
+ freqs = torch.outer(t, self.inv_freq)
380
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
381
+ emb = torch.cat((freqs, freqs), dim=-1)
382
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
383
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
384
+
385
+ def forward(self, x, seq_len=None):
386
+ # x: [bs, num_attention_heads, seq_len, head_size]
387
+ if seq_len > self.max_seq_len_cached:
388
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
389
+
390
+ return (
391
+ self.cos_cached[:seq_len].to(dtype=torch.float32),
392
+ self.sin_cached[:seq_len].to(dtype=torch.float32),
393
+ )
394
+
395
+
396
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
397
+ def rotate_half(x):
398
+ """Rotates half the hidden dims of the input."""
399
+ x1 = x[..., : x.shape[-1] // 2]
400
+ x2 = x[..., x.shape[-1] // 2:]
401
+ return torch.cat((-x2, x1), dim=-1)
402
+
403
+
404
+ # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
405
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
406
+ """Applies Rotary Position Embedding to the query and key tensors.
407
+
408
+ Args:
409
+ q (`torch.Tensor`): The query tensor.
410
+ k (`torch.Tensor`): The key tensor.
411
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
412
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
413
+ position_ids (`torch.Tensor`):
414
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
415
+ used to pass offsetted position ids when working with a KV-cache.
416
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
417
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
418
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
419
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
420
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
421
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
422
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
423
+ Returns:
424
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
425
+ """
426
+ dtype = q.dtype
427
+ rot_dim = cos.shape[-1]
428
+ q_, q_pass = q[..., :rot_dim], q[..., rot_dim:]
429
+ k_, k_pass = k[..., :rot_dim], k[..., rot_dim:]
430
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
431
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
432
+ q_embed = (q_ * cos) + (rotate_half(q_) * sin)
433
+ k_embed = (k_ * cos) + (rotate_half(k_) * sin)
434
+ return torch.cat((q_embed, q_pass), dim=-1).to(dtype), torch.cat((k_embed, k_pass), dim=-1).to(dtype)
435
+
436
+
437
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
438
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
439
+ """
440
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
441
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
442
+ """
443
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
444
+ if n_rep == 1:
445
+ return hidden_states
446
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
447
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
448
+
449
+
450
+ # Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->MiniMaxM1
451
+ class MiniMaxM1Attention(nn.Module):
452
+ """
453
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
454
+ and "Generating Long Sequences with Sparse Transformers".
455
+ """
456
+
457
+ def __init__(self, config: MiniMaxM1Config, layer_idx: Optional[int] = None):
458
+ super().__init__()
459
+ self.config = config
460
+ self.layer_idx = layer_idx
461
+ if layer_idx is None:
462
+ logger.warning_once(
463
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
464
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
465
+ "when creating this class."
466
+ )
467
+
468
+ self.hidden_size = config.hidden_size
469
+ self.num_heads = config.num_attention_heads
470
+ self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
471
+ self.num_key_value_heads = config.num_key_value_heads
472
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
473
+ self.max_position_embeddings = config.max_position_embeddings
474
+ self.rope_theta = config.rope_theta
475
+ self.is_causal = True
476
+ self.attention_dropout = config.attention_dropout
477
+
478
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
479
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
480
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
481
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
482
+ self.rotary_dim = getattr(config, 'rotary_dim', self.head_dim)
483
+
484
+ self.rotary_emb = MiniMaxM1RotaryEmbedding(
485
+ self.rotary_dim,
486
+ max_position_embeddings=self.max_position_embeddings,
487
+ base=self.rope_theta,
488
+ )
489
+
490
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
491
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
492
+
493
+ def forward(
494
+ self,
495
+ hidden_states: torch.Tensor,
496
+ attention_mask: Optional[torch.Tensor] = None,
497
+ position_ids: Optional[torch.LongTensor] = None,
498
+ past_key_value: Optional[Cache] = None,
499
+ output_attentions: bool = False,
500
+ use_cache: bool = False,
501
+ **kwargs,
502
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
503
+ if "padding_mask" in kwargs:
504
+ warnings.warn(
505
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
506
+ )
507
+ bsz, q_len, _ = hidden_states.size()
508
+
509
+ query_states = self.q_proj(hidden_states)
510
+ key_states = self.k_proj(hidden_states)
511
+ value_states = self.v_proj(hidden_states)
512
+
513
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
514
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
515
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
516
+
517
+ kv_seq_len = key_states.shape[-2]
518
+ if past_key_value is not None:
519
+ if self.layer_idx is None:
520
+ raise ValueError(
521
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
522
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
523
+ "with a layer index."
524
+ )
525
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
526
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
527
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
528
+
529
+ if past_key_value is not None:
530
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
531
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
532
+
533
+ # repeat k/v heads if n_kv_heads < n_heads
534
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
535
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
536
+
537
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
538
+
539
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
540
+ raise ValueError(
541
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
542
+ f" {attn_weights.size()}"
543
+ )
544
+
545
+ if attention_mask is not None:
546
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
547
+ raise ValueError(
548
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
549
+ )
550
+
551
+ attn_weights = attn_weights + attention_mask
552
+
553
+ # upcast attention to fp32
554
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
555
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
556
+ attn_output = torch.matmul(attn_weights, value_states)
557
+
558
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
559
+ raise ValueError(
560
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
561
+ f" {attn_output.size()}"
562
+ )
563
+
564
+ attn_output = attn_output.transpose(1, 2).contiguous()
565
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
566
+
567
+ attn_output = self.o_proj(attn_output)
568
+
569
+ if not output_attentions:
570
+ attn_weights = None
571
+
572
+ return attn_output, attn_weights, past_key_value
573
+
574
+
575
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->MiniMaxM1
576
+ class MiniMaxM1FlashAttention2(MiniMaxM1Attention):
577
+ """
578
+ MiniMaxM1 flash attention module. This module inherits from `MiniMaxM1Attention` as the weights of the module stays
579
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
580
+ flash attention and deal with padding tokens in case the input contains any of them.
581
+ """
582
+
583
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
584
+ def __init__(self, *args, **kwargs):
585
+ super().__init__(*args, **kwargs)
586
+
587
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
588
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
589
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
590
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
591
+
592
+ def forward(
593
+ self,
594
+ hidden_states: torch.Tensor,
595
+ attention_mask: Optional[torch.Tensor] = None,
596
+ position_ids: Optional[torch.LongTensor] = None,
597
+ past_key_value: Optional[Union[Cache, Tuple[torch.Tensor]]] = None,
598
+ output_attentions: bool = False,
599
+ use_cache: bool = False,
600
+ **kwargs,
601
+ ):
602
+ if "padding_mask" in kwargs:
603
+ warnings.warn(
604
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
605
+ )
606
+
607
+ # overwrite attention_mask with padding_mask
608
+ attention_mask = kwargs.pop("padding_mask")
609
+ bsz, q_len, _ = hidden_states.size()
610
+
611
+ query_states = self.q_proj(hidden_states)
612
+ key_states = self.k_proj(hidden_states)
613
+ value_states = self.v_proj(hidden_states)
614
+
615
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
616
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
617
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
618
+
619
+ kv_seq_len = key_states.shape[-2]
620
+ if past_key_value is not None:
621
+ kv_seq_len += past_key_value[0].shape[-3]
622
+
623
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
624
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
625
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
626
+
627
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
628
+
629
+ use_sliding_windows = (
630
+ _flash_supports_window_size
631
+ and getattr(self.config, "sliding_window", None) is not None
632
+ and kv_seq_len > self.config.sliding_window
633
+ )
634
+
635
+ if not _flash_supports_window_size:
636
+ logger.warning_once(
637
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
638
+ " make sure to upgrade flash-attn library."
639
+ )
640
+
641
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
642
+
643
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
644
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
645
+ # cast them back in float16 just to be sure everything works as expected.
646
+ input_dtype = query_states.dtype
647
+ if input_dtype == torch.float32:
648
+ if torch.is_autocast_enabled():
649
+ target_dtype = torch.get_autocast_gpu_dtype()
650
+ # Handle the case where the model is quantized
651
+ elif hasattr(self.config, "_pre_quantization_dtype"):
652
+ target_dtype = self.config._pre_quantization_dtype
653
+ else:
654
+ target_dtype = self.q_proj.weight.dtype
655
+
656
+ logger.warning_once(
657
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
658
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
659
+ f" {target_dtype}."
660
+ )
661
+
662
+ query_states = query_states.to(target_dtype)
663
+ key_states = key_states.to(target_dtype)
664
+ value_states = value_states.to(target_dtype)
665
+
666
+ # Reshape to the expected shape for Flash Attention
667
+ query_states = query_states.transpose(1, 2)
668
+ key_states = key_states.transpose(1, 2)
669
+ value_states = value_states.transpose(1, 2)
670
+
671
+ if past_key_value is not None:
672
+ # reuse k, v, for evaluation only
673
+ key_states = torch.cat([past_key_value[0], key_states], dim=-3)
674
+ value_states = torch.cat([past_key_value[1], value_states], dim=-3)
675
+
676
+ past_key_value = (key_states, value_states) if use_cache else None
677
+
678
+ attn_output = self._flash_attention_forward(
679
+ query_states,
680
+ key_states,
681
+ value_states,
682
+ attention_mask,
683
+ q_len,
684
+ dropout=dropout_rate,
685
+ use_sliding_windows=use_sliding_windows,
686
+ )
687
+
688
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
689
+ attn_output = self.o_proj(attn_output)
690
+
691
+ if not output_attentions:
692
+ attn_weights = None
693
+
694
+ return attn_output, attn_weights, past_key_value
695
+
696
+ def _flash_attention_forward(
697
+ self,
698
+ query_states,
699
+ key_states,
700
+ value_states,
701
+ attention_mask,
702
+ query_length,
703
+ dropout=0.0,
704
+ softmax_scale=None,
705
+ use_sliding_windows=False,
706
+ ):
707
+ """
708
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
709
+ first unpad the input, then computes the attention scores and pad the final attention scores.
710
+
711
+ Args:
712
+ query_states (`torch.Tensor`):
713
+ Input query states to be passed to Flash Attention API
714
+ key_states (`torch.Tensor`):
715
+ Input key states to be passed to Flash Attention API
716
+ value_states (`torch.Tensor`):
717
+ Input value states to be passed to Flash Attention API
718
+ attention_mask (`torch.Tensor`):
719
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
720
+ position of padding tokens and 1 for the position of non-padding tokens.
721
+ dropout (`float`):
722
+ Attention dropout
723
+ softmax_scale (`float`, *optional*):
724
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
725
+ use_sliding_windows (`bool`, *optional*):
726
+ Whether to activate sliding window attention.
727
+ """
728
+ if not self._flash_attn_uses_top_left_mask:
729
+ causal = self.is_causal
730
+ else:
731
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
732
+ causal = self.is_causal and query_length != 1
733
+
734
+ # Contains at least one padding token in the sequence
735
+ if attention_mask is not None:
736
+ batch_size = query_states.shape[0]
737
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
738
+ query_states, key_states, value_states, attention_mask, query_length
739
+ )
740
+
741
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
742
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
743
+
744
+ if not use_sliding_windows:
745
+ attn_output_unpad = flash_attn_varlen_func(
746
+ query_states,
747
+ key_states,
748
+ value_states,
749
+ cu_seqlens_q=cu_seqlens_q,
750
+ cu_seqlens_k=cu_seqlens_k,
751
+ max_seqlen_q=max_seqlen_in_batch_q,
752
+ max_seqlen_k=max_seqlen_in_batch_k,
753
+ dropout_p=dropout,
754
+ softmax_scale=softmax_scale,
755
+ causal=causal,
756
+ )
757
+ else:
758
+ attn_output_unpad = flash_attn_varlen_func(
759
+ query_states,
760
+ key_states,
761
+ value_states,
762
+ cu_seqlens_q=cu_seqlens_q,
763
+ cu_seqlens_k=cu_seqlens_k,
764
+ max_seqlen_q=max_seqlen_in_batch_q,
765
+ max_seqlen_k=max_seqlen_in_batch_k,
766
+ dropout_p=dropout,
767
+ softmax_scale=softmax_scale,
768
+ causal=causal,
769
+ window_size=(self.config.sliding_window, self.config.sliding_window),
770
+ )
771
+
772
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
773
+ else:
774
+ if not use_sliding_windows:
775
+ attn_output = flash_attn_func(
776
+ query_states,
777
+ key_states,
778
+ value_states,
779
+ dropout,
780
+ softmax_scale=softmax_scale,
781
+ causal=causal,
782
+ )
783
+ else:
784
+ attn_output = flash_attn_func(
785
+ query_states,
786
+ key_states,
787
+ value_states,
788
+ dropout,
789
+ softmax_scale=softmax_scale,
790
+ causal=causal,
791
+ window_size=(self.config.sliding_window, self.config.sliding_window),
792
+ )
793
+
794
+ return attn_output
795
+
796
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
797
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
798
+
799
+ # On the first iteration we need to properly re-create the padding mask
800
+ # by slicing it on the proper place
801
+ if kv_seq_len != attention_mask.shape[-1]:
802
+ attention_mask_num_tokens = attention_mask.shape[-1]
803
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len:]
804
+
805
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
806
+
807
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
808
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
809
+
810
+ if query_length == kv_seq_len:
811
+ query_layer = index_first_axis(
812
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
813
+ )
814
+ cu_seqlens_q = cu_seqlens_k
815
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
816
+ indices_q = indices_k
817
+ elif query_length == 1:
818
+ max_seqlen_in_batch_q = 1
819
+ cu_seqlens_q = torch.arange(
820
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
821
+ ) # There is a memcpy here, that is very bad.
822
+ indices_q = cu_seqlens_q[:-1]
823
+ query_layer = query_layer.squeeze(1)
824
+ else:
825
+ # The -q_len: slice assumes left padding.
826
+ attention_mask = attention_mask[:, -query_length:]
827
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
828
+
829
+ return (
830
+ query_layer,
831
+ key_layer,
832
+ value_layer,
833
+ indices_q,
834
+ (cu_seqlens_q, cu_seqlens_k),
835
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
836
+ )
837
+
838
+
839
+ class MiniMaxM1MLP(nn.Module):
840
+ def __init__(self, config):
841
+ super().__init__()
842
+ self.config = config
843
+ self.hidden_size = config.hidden_size
844
+ self.intermediate_size = config.intermediate_size
845
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
846
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
847
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
848
+ self.act_fn = ACT2FN[config.hidden_act]
849
+
850
+ def forward(self, x):
851
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
852
+ return down_proj
853
+
854
+
855
+ class MiniMaxM1BlockSparseTop2MLP(nn.Module):
856
+ def __init__(self, config: MiniMaxM1Config):
857
+ super().__init__()
858
+ self.ffn_dim = config.intermediate_size
859
+ self.hidden_dim = config.hidden_size
860
+
861
+ self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
862
+ self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
863
+ self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
864
+
865
+ self.act_fn = ACT2FN[config.hidden_act]
866
+
867
+ def forward(self, hidden_states):
868
+ current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
869
+ current_hidden_states = self.w2(current_hidden_states)
870
+ return current_hidden_states
871
+
872
+
873
+ class MiniMaxM1BLockSparseTop2MLP(MiniMaxM1BlockSparseTop2MLP):
874
+ def __init__(self, *args, **kwargs):
875
+ logger.warning_once(
876
+ "MiniMaxM1BLockSparseTop2MLP is deprecated by MiniMaxM1BlockSparseTop2MLP and will be removed in v4.40."
877
+ )
878
+ super().__init__(*args, **kwargs)
879
+
880
+
881
+ class MiniMaxM1SparseMoeBlock(nn.Module):
882
+ """
883
+ This implementation is
884
+ strictly equivalent to standard MoE with full capacity (no
885
+ dropped tokens). It's faster since it formulates MoE operations
886
+ in terms of block-sparse operations to accomodate imbalanced
887
+ assignments of tokens to experts, whereas standard MoE either
888
+ (1) drop tokens at the cost of reduced performance or (2) set
889
+ capacity factor to number of experts and thus waste computation
890
+ and memory on padding.
891
+ """
892
+
893
+ def __init__(self, config):
894
+ super().__init__()
895
+ self.hidden_dim = config.hidden_size
896
+ self.ffn_dim = config.intermediate_size
897
+ self.num_experts = config.num_local_experts
898
+ self.top_k = config.num_experts_per_tok
899
+
900
+ # gating
901
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
902
+
903
+ self.experts = nn.ModuleList([MiniMaxM1BlockSparseTop2MLP(config) for _ in range(self.num_experts)])
904
+
905
+ # Jitter parameters
906
+ self.jitter_noise = config.router_jitter_noise
907
+
908
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
909
+ """ """
910
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
911
+ if self.training and self.jitter_noise > 0:
912
+ hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
913
+ hidden_states = hidden_states.view(-1, hidden_dim)
914
+ # router_logits: (batch * sequence_length, n_experts)
915
+ router_logits = self.gate(hidden_states)
916
+
917
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
918
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
919
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
920
+ # we cast back to the input dtype
921
+ routing_weights = routing_weights.to(hidden_states.dtype)
922
+
923
+ final_hidden_states = torch.zeros(
924
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
925
+ )
926
+
927
+ # One hot encode the selected experts to create an expert mask
928
+ # this will be used to easily index which expert is going to be sollicitated
929
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
930
+
931
+ # Loop over all available experts in the model and perform the computation on each expert
932
+ for expert_idx in range(self.num_experts):
933
+ expert_layer = self.experts[expert_idx]
934
+ idx, top_x = torch.where(expert_mask[expert_idx])
935
+
936
+ # Index the correct hidden states and compute the expert hidden state for
937
+ # the current expert. We need to make sure to multiply the output hidden
938
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
939
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
940
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
941
+
942
+ # However `index_add_` only support torch tensors for indexing so we'll use
943
+ # the `top_x` tensor here.
944
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
945
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
946
+ return final_hidden_states, router_logits
947
+
948
+
949
+ class MiniMaxM1DecoderLayer(nn.Module):
950
+ def __init__(self, config: MiniMaxM1Config, layer_idx: int):
951
+ super().__init__()
952
+ self.config = config
953
+ self.hidden_size = config.hidden_size
954
+
955
+ self.self_attn = self.build_attn(config, layer_idx)
956
+
957
+ self.layer_idx = layer_idx
958
+
959
+ self.block_sparse_moe = MiniMaxM1SparseMoeBlock(config)
960
+ self.input_layernorm = MiniMaxM1RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
961
+ self.post_attention_layernorm = MiniMaxM1RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
962
+
963
+ self.postnorm = getattr(config, 'postnorm', False)
964
+ self.layernorm_attention_alpha = getattr(config, 'layernorm_linear_attention_alpha', 1) \
965
+ if config.attention_type == 0 else getattr(config, 'layernorm_full_attention_alpha', 1)
966
+ self.layernorm_attention_beta = getattr(config, 'layernorm_linear_attention_beta', 1) \
967
+ if config.attention_type == 0 else getattr(config, 'layernorm_full_attention_beta', 1)
968
+ self.layernorm_mlp_alpha = getattr(config, 'layernorm_mlp_alpha', 1)
969
+ self.layernorm_mlp_beta = getattr(config, 'layernorm_mlp_beta', 1)
970
+
971
+ shared_intermediate = getattr(config, 'shared_intermediate_size', 0)
972
+ self.shared_moe = False
973
+ if shared_intermediate > 0:
974
+ self.shared_moe = True
975
+ self.shared_mlp = MiniMaxM1MLP(config)
976
+ self.coefficient = torch.nn.Linear(self.hidden_size, 1, bias=False)
977
+
978
+ def build_attn(self, config, layer_idx):
979
+ if config.attention_type == 0:
980
+ Attention_module = MiniMaxM1LightningAttention
981
+ else:
982
+ Attention_module = MiniMaxM1FlashAttention2
983
+
984
+ return Attention_module(
985
+ config,
986
+ layer_idx
987
+ )
988
+
989
+ def forward(
990
+ self,
991
+ hidden_states: torch.Tensor,
992
+ attention_mask: Optional[torch.Tensor] = None,
993
+ position_ids: Optional[torch.LongTensor] = None,
994
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
995
+ output_attentions: Optional[bool] = False,
996
+ output_router_logits: Optional[bool] = False,
997
+ use_cache: Optional[bool] = False,
998
+ slope_rate: Optional[float] = None,
999
+ **kwargs,
1000
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1001
+ if "padding_mask" in kwargs:
1002
+ warnings.warn(
1003
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1004
+ )
1005
+ """
1006
+ Args:
1007
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1008
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1009
+ `(batch, sequence_length)` where padding elements are indicated by 0.
1010
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1011
+ output_attentions (`bool`, *optional*):
1012
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1013
+ returned tensors for more detail.
1014
+ output_router_logits (`bool`, *optional*):
1015
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1016
+ should not be returned during inference.
1017
+ use_cache (`bool`, *optional*):
1018
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1019
+ (see `past_key_values`).
1020
+ """
1021
+
1022
+ residual = hidden_states
1023
+
1024
+ hidden_states = self.input_layernorm(hidden_states)
1025
+ if self.postnorm:
1026
+ residual = hidden_states
1027
+
1028
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1029
+ hidden_states=hidden_states,
1030
+ position_ids=position_ids,
1031
+ attn_mask=attention_mask,
1032
+ past_key_value=past_key_value,
1033
+ output_attentions=output_attentions,
1034
+ use_cache=use_cache,
1035
+ slope_rate=slope_rate,
1036
+ )
1037
+
1038
+ hidden_states = residual * self.layernorm_attention_alpha \
1039
+ + hidden_states * self.layernorm_attention_beta
1040
+
1041
+ # Fully Connected
1042
+ residual = hidden_states
1043
+ hidden_states = self.post_attention_layernorm(hidden_states)
1044
+ if self.postnorm:
1045
+ residual = hidden_states
1046
+
1047
+ moe_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
1048
+ if self.shared_moe:
1049
+ output_mlp = self.shared_mlp(hidden_states)
1050
+ weight_fp32 = self.coefficient.weight.float()
1051
+ coef = hidden_states.to(torch.float32) @ weight_fp32.T
1052
+ coef = torch.nn.functional.sigmoid(coef).to(hidden_states.dtype)
1053
+ hidden_states = moe_hidden_states * (1 - coef) + output_mlp * coef
1054
+ else:
1055
+ hidden_states = moe_hidden_states
1056
+
1057
+ hidden_states = residual * self.layernorm_mlp_alpha \
1058
+ + hidden_states * self.layernorm_mlp_beta
1059
+
1060
+ outputs = (hidden_states,)
1061
+
1062
+ if output_attentions:
1063
+ outputs += (self_attn_weights,)
1064
+
1065
+ if use_cache:
1066
+ outputs += (present_key_value,)
1067
+
1068
+ if output_router_logits:
1069
+ outputs += (router_logits,)
1070
+
1071
+ return outputs
1072
+
1073
+
1074
+ MIXTRAL_START_DOCSTRING = r"""
1075
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1076
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1077
+ etc.)
1078
+
1079
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1080
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1081
+ and behavior.
1082
+
1083
+ Parameters:
1084
+ config ([`MiniMaxM1Config`]):
1085
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1086
+ load the weights associated with the model, only the configuration. Check out the
1087
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1088
+ """
1089
+
1090
+
1091
+ @add_start_docstrings(
1092
+ "The bare MiniMaxM1 Model outputting raw hidden-states without any specific head on top.",
1093
+ MIXTRAL_START_DOCSTRING,
1094
+ )
1095
+ # Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->MiniMaxM1
1096
+ class MiniMaxM1PreTrainedModel(PreTrainedModel):
1097
+ config_class = MiniMaxM1Config
1098
+ base_model_prefix = "model"
1099
+ supports_gradient_checkpointing = True
1100
+ _no_split_modules = ["MiniMaxM1DecoderLayer"]
1101
+ _skip_keys_device_placement = "past_key_values"
1102
+ _supports_flash_attn_2 = True
1103
+ _supports_sdpa = True
1104
+
1105
+ def _init_weights(self, module):
1106
+ std = self.config.initializer_range
1107
+ if isinstance(module, nn.Linear):
1108
+ module.weight.data.normal_(mean=0.0, std=std)
1109
+ if module.bias is not None:
1110
+ module.bias.data.zero_()
1111
+ elif isinstance(module, nn.Embedding):
1112
+ module.weight.data.normal_(mean=0.0, std=std)
1113
+ if module.padding_idx is not None:
1114
+ module.weight.data[module.padding_idx].zero_()
1115
+
1116
+
1117
+ MIXTRAL_INPUTS_DOCSTRING = r"""
1118
+ Args:
1119
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1120
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1121
+ it.
1122
+
1123
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1124
+ [`PreTrainedTokenizer.__call__`] for details.
1125
+
1126
+ [What are input IDs?](../glossary#input-ids)
1127
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1128
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1129
+
1130
+ - 1 for tokens that are **not masked**,
1131
+ - 0 for tokens that are **masked**.
1132
+
1133
+ [What are attention masks?](../glossary#attention-mask)
1134
+
1135
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1136
+ [`PreTrainedTokenizer.__call__`] for details.
1137
+
1138
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1139
+ `past_key_values`).
1140
+
1141
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1142
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1143
+ information on the default strategy.
1144
+
1145
+ - 1 indicates the head is **not masked**,
1146
+ - 0 indicates the head is **masked**.
1147
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1148
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1149
+ config.n_positions - 1]`.
1150
+
1151
+ [What are position IDs?](../glossary#position-ids)
1152
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1153
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
1154
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
1155
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1156
+
1157
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1158
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1159
+
1160
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1161
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1162
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1163
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1164
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1165
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1166
+ model's internal embedding lookup matrix.
1167
+ use_cache (`bool`, *optional*):
1168
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1169
+ `past_key_values`).
1170
+ output_attentions (`bool`, *optional*):
1171
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1172
+ tensors for more detail.
1173
+ output_hidden_states (`bool`, *optional*):
1174
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1175
+ more detail.
1176
+ output_router_logits (`bool`, *optional*):
1177
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1178
+ should not be returned during inference.
1179
+ return_dict (`bool`, *optional*):
1180
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1181
+ """
1182
+
1183
+
1184
+ @add_start_docstrings(
1185
+ "The bare MiniMaxM1 Model outputting raw hidden-states without any specific head on top.",
1186
+ MIXTRAL_START_DOCSTRING,
1187
+ )
1188
+ # Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->MiniMaxM1
1189
+ class MiniMaxM1Model(MiniMaxM1PreTrainedModel):
1190
+ """
1191
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniMaxM1DecoderLayer`]
1192
+
1193
+ Args:
1194
+ config: MiniMaxM1Config
1195
+ """
1196
+
1197
+ def __init__(self, config: MiniMaxM1Config):
1198
+ super().__init__(config)
1199
+ self.padding_idx = config.pad_token_id
1200
+ self.vocab_size = config.vocab_size
1201
+
1202
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1203
+ self.attn_type_list = config.attn_type_list
1204
+ config_copy = copy.deepcopy(config)
1205
+
1206
+ self.layers = nn.ModuleList([])
1207
+ for i in range(config.num_hidden_layers):
1208
+ _config = copy.deepcopy(config)
1209
+ if self.attn_type_list[i] == 0:
1210
+ _config._attn_implementation = 'linear_attention'
1211
+ _config.attention_type = 0
1212
+ else:
1213
+ _config._attn_implementation = config_copy._attn_implementation
1214
+ _config.attention_type = 1
1215
+ self.layers.append(MiniMaxM1DecoderLayer(_config, i))
1216
+
1217
+ self._attn_implementation = config_copy._attn_implementation
1218
+ self.norm = MiniMaxM1RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1219
+
1220
+ self.gradient_checkpointing = False
1221
+ self.slopes = self._build_slope_tensor(config.num_attention_heads)
1222
+ # mask
1223
+ self._linear_attn_mask = torch.empty(0)
1224
+
1225
+ # Initialize weights and apply final processing
1226
+ self.post_init()
1227
+
1228
+ def get_input_embeddings(self):
1229
+ return self.embed_tokens
1230
+
1231
+ def set_input_embeddings(self, value):
1232
+ self.embed_tokens = value
1233
+
1234
+ @staticmethod
1235
+ def _build_slope_tensor(n_attention_heads: int):
1236
+
1237
+ def get_slopes(n):
1238
+
1239
+ def get_slopes_power_of_2(n):
1240
+ start = 2 ** (-(2 ** -(math.log2(n) - 3)))
1241
+ ratio = start
1242
+ return [start * ratio ** i for i in range(n)]
1243
+
1244
+ if math.log2(n).is_integer():
1245
+ return get_slopes_power_of_2(
1246
+ n) # In the paper, we only train models that have 2^a heads for some a. This function has
1247
+ else: # some good properties that only occur when the input is a power of 2. To maintain that even
1248
+ closest_power_of_2 = 2 ** math.floor(
1249
+ math.log2(n)) # when the number of heads is not a power of 2, we use this workaround.
1250
+ return (get_slopes_power_of_2(closest_power_of_2)
1251
+ + get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
1252
+
1253
+ # h, 1, 1
1254
+ slopes = torch.tensor(get_slopes(n_attention_heads), dtype=torch.float32).reshape(n_attention_heads, 1, 1)
1255
+
1256
+ return slopes
1257
+
1258
+ # Ignore copy
1259
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1260
+ def forward(
1261
+ self,
1262
+ input_ids: torch.LongTensor = None,
1263
+ attention_mask: Optional[torch.Tensor] = None,
1264
+ position_ids: Optional[torch.LongTensor] = None,
1265
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1266
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1267
+ use_cache: Optional[bool] = None,
1268
+ output_attentions: Optional[bool] = None,
1269
+ output_hidden_states: Optional[bool] = None,
1270
+ output_router_logits: Optional[bool] = None,
1271
+ return_dict: Optional[bool] = None,
1272
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
1273
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1274
+ output_router_logits = (
1275
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1276
+ )
1277
+ output_hidden_states = (
1278
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1279
+ )
1280
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1281
+
1282
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1283
+
1284
+ # retrieve input_ids and inputs_embeds
1285
+ if input_ids is not None and inputs_embeds is not None:
1286
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1287
+ elif input_ids is not None:
1288
+ batch_size, seq_length = input_ids.shape
1289
+ default_device = input_ids.device
1290
+ elif inputs_embeds is not None:
1291
+ batch_size, seq_length, _ = inputs_embeds.shape
1292
+ default_device = inputs_embeds.device
1293
+ else:
1294
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1295
+
1296
+ past_key_values_length = 0
1297
+
1298
+ if self.gradient_checkpointing and self.training:
1299
+ if use_cache:
1300
+ logger.warning_once(
1301
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1302
+ )
1303
+ use_cache = False
1304
+
1305
+ seq_length_with_past = seq_length
1306
+ if past_key_values is not None:
1307
+ for idx in range(len(past_key_values)):
1308
+ if self.attn_type_list[idx] == 1:
1309
+ past_key_values_length = past_key_values[idx][0].shape[-3]
1310
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1311
+ break
1312
+
1313
+ if position_ids is None:
1314
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1315
+ position_ids = torch.arange(
1316
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1317
+ )
1318
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1319
+ else:
1320
+ position_ids = position_ids.view(-1, seq_length).long()
1321
+
1322
+ if inputs_embeds is None:
1323
+ inputs_embeds = self.embed_tokens(input_ids)
1324
+
1325
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1326
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1327
+ if is_padding_right:
1328
+ raise ValueError(
1329
+ "You are attempting to perform batched generation with padding_side='right'"
1330
+ " this may lead to unexpected behaviour for Flash Attention version of MiniMaxM1. Make sure to "
1331
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1332
+ )
1333
+ slope_rates = [self.slopes.to(default_device) for _ in range(len(self.layers))]
1334
+ hidden_states = inputs_embeds
1335
+ # decoder layers
1336
+ all_hidden_states = () if output_hidden_states else None
1337
+ all_self_attns = () if output_attentions else None
1338
+ all_router_logits = () if output_router_logits else None
1339
+ next_decoder_cache = () if use_cache else None
1340
+
1341
+ for idx, decoder_layer in enumerate(self.layers):
1342
+ if output_hidden_states:
1343
+ all_hidden_states += (hidden_states,)
1344
+
1345
+ past_key_value = (past_key_values[idx] if past_key_values is not None else None)
1346
+ attn_mask = attention_mask
1347
+ slope_rate = slope_rates[idx]
1348
+ slope_rate = slope_rate * (1 - idx / (len(self.layers) - 1) + 1e-5)
1349
+ if self.gradient_checkpointing and self.training:
1350
+ layer_outputs = self._gradient_checkpointing_func(
1351
+ decoder_layer.__call__,
1352
+ hidden_states,
1353
+ attention_mask,
1354
+ position_ids,
1355
+ past_key_values,
1356
+ output_attentions,
1357
+ output_router_logits,
1358
+ use_cache,
1359
+ )
1360
+ else:
1361
+ layer_outputs = decoder_layer(
1362
+ hidden_states,
1363
+ attention_mask=attn_mask,
1364
+ position_ids=position_ids,
1365
+ past_key_value=past_key_value,
1366
+ output_attentions=output_attentions,
1367
+ output_router_logits=output_router_logits,
1368
+ use_cache=use_cache,
1369
+ slope_rate=slope_rate
1370
+ )
1371
+
1372
+ hidden_states = layer_outputs[0]
1373
+
1374
+ if use_cache:
1375
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1376
+
1377
+ if output_attentions:
1378
+ all_self_attns += (layer_outputs[1],)
1379
+
1380
+ if output_router_logits:
1381
+ all_router_logits += (layer_outputs[-1],)
1382
+
1383
+ hidden_states = self.norm(hidden_states)
1384
+
1385
+ # add hidden states from the last decoder layer
1386
+ if output_hidden_states:
1387
+ all_hidden_states += (hidden_states,)
1388
+ next_cache = next_decoder_cache if use_cache else None
1389
+ if not return_dict:
1390
+ return tuple(
1391
+ v
1392
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1393
+ if v is not None
1394
+ )
1395
+ return MoeModelOutputWithPast(
1396
+ last_hidden_state=hidden_states,
1397
+ past_key_values=next_cache,
1398
+ hidden_states=all_hidden_states,
1399
+ attentions=all_self_attns,
1400
+ router_logits=all_router_logits,
1401
+ )
1402
+
1403
+
1404
+ class MiniMaxM1ForCausalLM(MiniMaxM1PreTrainedModel):
1405
+ _tied_weights_keys = ["lm_head.weight"]
1406
+
1407
+ def __init__(self, config):
1408
+ super().__init__(config)
1409
+ self.model = MiniMaxM1Model(config)
1410
+ self.vocab_size = config.vocab_size
1411
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1412
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1413
+ self.num_experts = config.num_local_experts
1414
+ self.num_experts_per_tok = config.num_experts_per_tok
1415
+ # Initialize weights and apply final processing
1416
+ self.post_init()
1417
+
1418
+ def get_input_embeddings(self):
1419
+ return self.model.embed_tokens
1420
+
1421
+ def set_input_embeddings(self, value):
1422
+ self.model.embed_tokens = value
1423
+
1424
+ def get_output_embeddings(self):
1425
+ return self.lm_head
1426
+
1427
+ def set_output_embeddings(self, new_embeddings):
1428
+ self.lm_head = new_embeddings
1429
+
1430
+ def set_decoder(self, decoder):
1431
+ self.model = decoder
1432
+
1433
+ def get_decoder(self):
1434
+ return self.model
1435
+
1436
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1437
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1438
+ # Ignore copy
1439
+ def forward(
1440
+ self,
1441
+ input_ids: torch.LongTensor = None,
1442
+ attention_mask: Optional[torch.Tensor] = None,
1443
+ position_ids: Optional[torch.LongTensor] = None,
1444
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1445
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1446
+ labels: Optional[torch.LongTensor] = None,
1447
+ use_cache: Optional[bool] = None,
1448
+ output_attentions: Optional[bool] = None,
1449
+ output_hidden_states: Optional[bool] = None,
1450
+ output_router_logits: Optional[bool] = None,
1451
+ return_dict: Optional[bool] = None,
1452
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1453
+ r"""
1454
+ Args:
1455
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1456
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1457
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1458
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1459
+
1460
+ Returns:
1461
+
1462
+ Example:
1463
+
1464
+ ```python
1465
+ >>> from transformers import AutoTokenizer, MiniMaxM1ForCausalLM
1466
+
1467
+ >>> model = MiniMaxM1ForCausalLM.from_pretrained(PATH_TO_WEIGHTS)
1468
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_WEIGHTS)
1469
+
1470
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1471
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1472
+
1473
+ >>> # Generate
1474
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1475
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1476
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1477
+ ```"""
1478
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1479
+ output_router_logits = (
1480
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1481
+ )
1482
+
1483
+ output_hidden_states = (
1484
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1485
+ )
1486
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1487
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1488
+ outputs = self.model(
1489
+ input_ids=input_ids,
1490
+ attention_mask=attention_mask,
1491
+ position_ids=position_ids,
1492
+ past_key_values=past_key_values,
1493
+ inputs_embeds=inputs_embeds,
1494
+ use_cache=use_cache,
1495
+ output_attentions=output_attentions,
1496
+ output_hidden_states=output_hidden_states,
1497
+ output_router_logits=output_router_logits,
1498
+ return_dict=return_dict,
1499
+ )
1500
+
1501
+ hidden_states = outputs[0]
1502
+ logits = self.lm_head(hidden_states)
1503
+ logits = logits.float()
1504
+
1505
+ loss = None
1506
+ if labels is not None:
1507
+ # Shift so that tokens < n predict n
1508
+ shift_logits = logits[..., :-1, :].contiguous()
1509
+ shift_labels = labels[..., 1:].contiguous()
1510
+ # Flatten the tokens
1511
+ loss_fct = CrossEntropyLoss()
1512
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1513
+ shift_labels = shift_labels.view(-1)
1514
+ # Enable model parallelism
1515
+ shift_labels = shift_labels.to(shift_logits.device)
1516
+ loss = loss_fct(shift_logits, shift_labels)
1517
+
1518
+ aux_loss = None
1519
+ if output_router_logits:
1520
+ aux_loss = load_balancing_loss_func(
1521
+ outputs.router_logits if return_dict else outputs[-1],
1522
+ self.num_experts,
1523
+ self.num_experts_per_tok,
1524
+ attention_mask,
1525
+ )
1526
+ if labels is not None:
1527
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1528
+
1529
+ if not return_dict:
1530
+ output = (logits,) + outputs[1:]
1531
+ if output_router_logits:
1532
+ output = (aux_loss,) + output
1533
+ return (loss,) + output if loss is not None else output
1534
+
1535
+ torch.cuda.empty_cache()
1536
+ return MoeCausalLMOutputWithPast(
1537
+ loss=loss,
1538
+ aux_loss=aux_loss,
1539
+ logits=logits,
1540
+ past_key_values=outputs.past_key_values,
1541
+ hidden_states=outputs.hidden_states,
1542
+ attentions=outputs.attentions,
1543
+ router_logits=outputs.router_logits,
1544
+ )
1545
+
1546
+ def prepare_inputs_for_generation(
1547
+ self,
1548
+ input_ids,
1549
+ past_key_values=None,
1550
+ attention_mask=None,
1551
+ inputs_embeds=None,
1552
+ **kwargs,
1553
+ ):
1554
+ if past_key_values:
1555
+ input_ids = input_ids[:, -1:]
1556
+
1557
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1558
+ if inputs_embeds is not None and past_key_values is None:
1559
+ model_inputs = {"inputs_embeds": inputs_embeds}
1560
+ else:
1561
+ model_inputs = {"input_ids": input_ids}
1562
+
1563
+ model_inputs.update({
1564
+ "past_key_values": past_key_values,
1565
+ "use_cache": kwargs.get("use_cache"),
1566
+ "attention_mask": attention_mask,
1567
+ })
1568
+ return model_inputs
1569
+
1570
+ @staticmethod
1571
+ def _reorder_cache(past_key_values, beam_idx):
1572
+ reordered_past = ()
1573
+ for layer_past in past_key_values:
1574
+ reordered_past += (
1575
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1576
+ )
1577
+ return reordered_past
1578
+
1579
+
1580
+ @add_start_docstrings(
1581
+ """
1582
+ The MiniMaxM1 Model transformer with a sequence classification head on top (linear layer).
1583
+
1584
+ [`MiniMaxM1ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1585
+ (e.g. GPT-2) do.
1586
+
1587
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1588
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1589
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1590
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1591
+ each row of the batch).
1592
+ """,
1593
+ MIXTRAL_START_DOCSTRING,
1594
+ )
1595
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->MiniMaxM1, LLAMA->MIXTRAL
1596
+ class MiniMaxM1ForSequenceClassification(MiniMaxM1PreTrainedModel):
1597
+ def __init__(self, config):
1598
+ super().__init__(config)
1599
+ self.num_labels = config.num_labels
1600
+ self.model = MiniMaxM1Model(config)
1601
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1602
+
1603
+ # Initialize weights and apply final processing
1604
+ self.post_init()
1605
+
1606
+ def get_input_embeddings(self):
1607
+ return self.model.embed_tokens
1608
+
1609
+ def set_input_embeddings(self, value):
1610
+ self.model.embed_tokens = value
1611
+
1612
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1613
+ def forward(
1614
+ self,
1615
+ input_ids: torch.LongTensor = None,
1616
+ attention_mask: Optional[torch.Tensor] = None,
1617
+ position_ids: Optional[torch.LongTensor] = None,
1618
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1619
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1620
+ labels: Optional[torch.LongTensor] = None,
1621
+ use_cache: Optional[bool] = None,
1622
+ output_attentions: Optional[bool] = None,
1623
+ output_hidden_states: Optional[bool] = None,
1624
+ return_dict: Optional[bool] = None,
1625
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1626
+ r"""
1627
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1628
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1629
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1630
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1631
+ """
1632
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1633
+
1634
+ transformer_outputs = self.model(
1635
+ input_ids,
1636
+ attention_mask=attention_mask,
1637
+ position_ids=position_ids,
1638
+ past_key_values=past_key_values,
1639
+ inputs_embeds=inputs_embeds,
1640
+ use_cache=use_cache,
1641
+ output_attentions=output_attentions,
1642
+ output_hidden_states=output_hidden_states,
1643
+ return_dict=return_dict,
1644
+ )
1645
+ hidden_states = transformer_outputs[0]
1646
+ logits = self.score(hidden_states)
1647
+
1648
+ if input_ids is not None:
1649
+ batch_size = input_ids.shape[0]
1650
+ else:
1651
+ batch_size = inputs_embeds.shape[0]
1652
+
1653
+ if self.config.pad_token_id is None and batch_size != 1:
1654
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1655
+ if self.config.pad_token_id is None:
1656
+ sequence_lengths = -1
1657
+ else:
1658
+ if input_ids is not None:
1659
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1660
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1661
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1662
+ sequence_lengths = sequence_lengths.to(logits.device)
1663
+ else:
1664
+ sequence_lengths = -1
1665
+
1666
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1667
+
1668
+ loss = None
1669
+ if labels is not None:
1670
+ labels = labels.to(logits.device)
1671
+ if self.config.problem_type is None:
1672
+ if self.num_labels == 1:
1673
+ self.config.problem_type = "regression"
1674
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1675
+ self.config.problem_type = "single_label_classification"
1676
+ else:
1677
+ self.config.problem_type = "multi_label_classification"
1678
+
1679
+ if self.config.problem_type == "regression":
1680
+ loss_fct = MSELoss()
1681
+ if self.num_labels == 1:
1682
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1683
+ else:
1684
+ loss = loss_fct(pooled_logits, labels)
1685
+ elif self.config.problem_type == "single_label_classification":
1686
+ loss_fct = CrossEntropyLoss()
1687
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1688
+ elif self.config.problem_type == "multi_label_classification":
1689
+ loss_fct = BCEWithLogitsLoss()
1690
+ loss = loss_fct(pooled_logits, labels)
1691
+ if not return_dict:
1692
+ output = (pooled_logits,) + transformer_outputs[1:]
1693
+ return ((loss,) + output) if loss is not None else output
1694
+
1695
+ return SequenceClassifierOutputWithPast(
1696
+ loss=loss,
1697
+ logits=pooled_logits,
1698
+ past_key_values=transformer_outputs.past_key_values,
1699
+ hidden_states=transformer_outputs.hidden_states,
1700
+ attentions=transformer_outputs.attentions,
1701
+ )
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<beginning_of_sentence>",
4
+ "clean_up_tokenization_spaces": false,
5
+ "eos_token": "<end_of_sentence>",
6
+ "model_max_length": 40960000,
7
+ "tokenizer_class": "GPT2Tokenizer",
8
+ "unk_token": "<end_of_document>",
9
+ "chat_template": "{{ '<begin_of_document>' -}}{% set ns = namespace(system_prompt='') -%}{% for message in messages -%}{% if message['role'] == 'system' -%}{% set ns.system_prompt = ns.system_prompt + message['content'][0]['text'] -%}{% endif -%}{%- endfor -%}{% if ns.system_prompt != '' -%}{{ '<beginning_of_sentence>system ai_setting=assistant\n' + ns.system_prompt + '<end_of_sentence>\n' -}}{%- endif -%}{% if tools -%}{{ '<beginning_of_sentence>system tool_setting=tools\nYou are provided with these tools:\n<tools>\n' -}}{% for tool in tools -%}{{ tool | tojson ~ '\n' -}}{%- endfor -%}{{ '</tools>\n\nIf you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:\n<tool_calls>\n{''name'': <tool-name-1>, ''arguments'': <args-json-object-1>}\n...\n</tool_calls><end_of_sentence>\n' -}}{%- endif -%}{% for message in messages -%}{% if message['role'] == 'user' -%}{{ '<beginning_of_sentence>user name=user\n' + message['content'][0]['text'] + '<end_of_sentence>\n' -}}{% elif message['role'] == 'assistant' -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{% for content in message['content'] | selectattr('type', 'equalto', 'text') -%}{{ content['text'] -}}{%- endfor -%}{{ '<end_of_sentence>\n' -}}{% elif message['role'] == 'tool' -%}{{ '<beginning_of_sentence>tool name=tools\n' }} {%- for content in message['content'] -%}{{- 'tool name: ' + content['name'] + '\n' + 'tool result: ' + content['text'] + '\n\n' -}} {%- endfor -%}{{- '<end_of_sentence>\n' -}}{% endif -%}{%- endfor -%}{% if add_generation_prompt -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{%- endif -%}"
10
+ }
transformers_deployment_guide.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 MiniMax Model Transformers Deployment Guide
2
+
3
+ [Transformers中文版部署指南](./transformers_deployment_guide_cn.md)
4
+
5
+ ## 📖 Introduction
6
+
7
+ This guide will help you deploy the MiniMax-M1 model using the [Transformers](https://huggingface.co/docs/transformers/index) library. Transformers is a widely used deep learning library that provides a rich collection of pre-trained models and flexible model operation interfaces.
8
+
9
+ ## 🛠️ Environment Setup
10
+
11
+ ### Installing Transformers
12
+
13
+ ```bash
14
+ pip install transformers torch accelerate
15
+ ```
16
+
17
+ ## 📋 Basic Usage Example
18
+
19
+ The pre-trained model can be used as follows:
20
+
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
23
+
24
+ MODEL_PATH = "{MODEL_PATH}"
25
+ model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
26
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
27
+
28
+ messages = [
29
+ {"role": "user", "content": "What is your favourite condiment?"},
30
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
31
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
32
+ ]
33
+
34
+ text = tokenizer.apply_chat_template(
35
+ messages,
36
+ tokenize=False,
37
+ add_generation_prompt=True
38
+ )
39
+
40
+ model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
41
+
42
+ generation_config = GenerationConfig(
43
+ max_new_tokens=20,
44
+ eos_token_id=tokenizer.eos_token_id,
45
+ use_cache=True,
46
+ )
47
+
48
+ generated_ids = model.generate(**model_inputs, generation_config=generation_config)
49
+
50
+ generated_ids = [
51
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
52
+ ]
53
+
54
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
55
+ print(response)
56
+ ```
57
+
58
+ ## ⚡ Performance Optimization
59
+
60
+ ### Speeding up with Flash Attention
61
+
62
+ The code snippet above showcases inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
63
+
64
+ First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature:
65
+
66
+ ```bash
67
+ pip install -U flash-attn --no-build-isolation
68
+ ```
69
+
70
+ Also make sure that you have hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [Flash Attention repository](https://github.com/Dao-AILab/flash-attention). Additionally, ensure you load your model in half-precision (e.g. `torch.float16`).
71
+
72
+ To load and run a model using Flash Attention-2, refer to the snippet below:
73
+
74
+ ```python
75
+ import torch
76
+ from transformers import AutoModelForCausalLM, AutoTokenizer
77
+
78
+ MODEL_PATH = "{MODEL_PATH}"
79
+ model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
80
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
81
+
82
+ prompt = "My favourite condiment is"
83
+
84
+ model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
85
+ generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
86
+ response = tokenizer.batch_decode(generated_ids)[0]
87
+ print(response)
88
+ ```
89
+
90
+ ## 📮 Getting Support
91
+
92
+ If you encounter any issues while deploying the MiniMax-M1 model:
93
+ - Please check our official documentation
94
+ - Contact our technical support team through official channels
95
+ - Submit an Issue on our GitHub repository
96
+
97
+ We continuously optimize the deployment experience on Transformers and welcome your feedback!
transformers_deployment_guide_cn.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 MiniMax 模型 Transformers 部署指南
2
+
3
+ ## 📖 简介
4
+
5
+ 本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。
6
+
7
+ ## 🛠️ 环境准备
8
+
9
+ ### 安装 Transformers
10
+
11
+ ```bash
12
+ pip install transformers torch accelerate
13
+ ```
14
+
15
+ ## 📋 基本使用示例
16
+
17
+ 预训练模型可以按照以下方式使用:
18
+
19
+ ```python
20
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
21
+
22
+ MODEL_PATH = "{MODEL_PATH}"
23
+ model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
24
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
25
+
26
+ messages = [
27
+ {"role": "user", "content": "What is your favourite condiment?"},
28
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
29
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
30
+ ]
31
+
32
+ text = tokenizer.apply_chat_template(
33
+ messages,
34
+ tokenize=False,
35
+ add_generation_prompt=True
36
+ )
37
+
38
+ model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
39
+
40
+ generation_config = GenerationConfig(
41
+ max_new_tokens=20,
42
+ eos_token_id=tokenizer.eos_token_id,
43
+ use_cache=True,
44
+ )
45
+
46
+ generated_ids = model.generate(**model_inputs, generation_config=generation_config)
47
+
48
+ generated_ids = [
49
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
50
+ ]
51
+
52
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
53
+ print(response)
54
+ ```
55
+
56
+ ## ⚡ 性能优化
57
+
58
+ ### 使用 Flash Attention 加速
59
+
60
+ 上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。
61
+
62
+ 首先,确保安装最新版本的 Flash Attention 2 以包含滑动窗口注意力功能:
63
+
64
+ ```bash
65
+ pip install -U flash-attn --no-build-isolation
66
+ ```
67
+
68
+ 还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。
69
+
70
+ 要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段:
71
+
72
+ ```python
73
+ import torch
74
+ from transformers import AutoModelForCausalLM, AutoTokenizer
75
+
76
+ MODEL_PATH = "{MODEL_PATH}"
77
+ model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
78
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
79
+
80
+ prompt = "My favourite condiment is"
81
+
82
+ model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
83
+ generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
84
+ response = tokenizer.batch_decode(generated_ids)[0]
85
+ print(response)
86
+ ```
87
+
88
+ ## 📮 获取支持
89
+
90
+ 如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
91
+ - 请查看我们的官方文档
92
+ - 通过官方渠道联系我们的技术支持团队
93
+ - 在我们的 GitHub 仓库提交 Issue
94
+
95
+ 我们会持续优化 Transformers 上的部署体验,欢迎您的反馈!
vllm_deployment_guide.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 MiniMax Models vLLM Deployment Guide
2
+
3
+ [vLLM中文版部署指南](./vllm_deployment_guide_cn.md)
4
+
5
+ ## 📖 Introduction
6
+
7
+ We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to deploy [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k) model. Based on our testing, vLLM performs excellently when deploying this model, with the following features:
8
+
9
+ - 🔥 Outstanding service throughput performance
10
+ - ⚡ Efficient and intelligent memory management
11
+ - 📦 Powerful batch request processing capability
12
+ - ⚙️ Deeply optimized underlying performance
13
+
14
+ The MiniMax-M1 model can run efficiently on a single server equipped with 8 H800 or 8 H20 GPUs. In terms of hardware configuration, a server with 8 H800 GPUs can process context inputs up to 2 million tokens, while a server equipped with 8 H20 GPUs can support ultra-long context processing capabilities of up to 5 million tokens.
15
+
16
+ ## 💾 Obtaining MiniMax Models
17
+
18
+ ### MiniMax-M1 Model Obtaining
19
+
20
+ You can download the model from our official HuggingFace repository: [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k)
21
+
22
+ Download command:
23
+ ```
24
+ pip install -U huggingface-hub
25
+ huggingface-cli download MiniMaxAI/MiniMax-M1
26
+
27
+ # If you encounter network issues, you can set a proxy
28
+ export HF_ENDPOINT=https://hf-mirror.com
29
+ ```
30
+
31
+ Or download using git:
32
+
33
+ ```bash
34
+ git lfs install
35
+ git clone https://huggingface.co/MiniMaxAI/MiniMax-M1-40k
36
+ ```
37
+
38
+ ⚠️ **Important Note**: Please ensure that [Git LFS](https://git-lfs.github.com/) is installed on your system, which is necessary for completely downloading the model weight files.
39
+
40
+ ## 🛠️ Deployment Options
41
+
42
+ ### Option 1: Deploy Using Docker (Recommended)
43
+
44
+ To ensure consistency and stability of the deployment environment, we recommend using Docker for deployment.
45
+
46
+ ⚠️ **Version Requirements**:
47
+ - MiniMax-M1 model requires vLLM version 0.8.3 or later for full support
48
+ - If you are using a Docker image with vLLM version lower than the required version, you will need to:
49
+ 1. Update to the latest vLLM code
50
+ 2. Recompile vLLM from source. Follow the compilation instructions in Solution 2 of the Common Issues section
51
+
52
+ 1. Get the container image:
53
+ ```bash
54
+ docker pull vllm/vllm-openai:v0.8.3
55
+ ```
56
+
57
+ 2. Run the container:
58
+ ```bash
59
+ # Set environment variables
60
+ IMAGE=vllm/vllm-openai:v0.8.3
61
+ MODEL_DIR=<model storage path>
62
+ CODE_DIR=<code path>
63
+ NAME=MiniMaxImage
64
+
65
+ # Docker run configuration
66
+ DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
67
+
68
+ # Start the container
69
+ sudo docker run -it \
70
+ -v $MODEL_DIR:$MODEL_DIR \
71
+ -v $CODE_DIR:$CODE_DIR \
72
+ --name $NAME \
73
+ $DOCKER_RUN_CMD \
74
+ $IMAGE /bin/bash
75
+ ```
76
+
77
+
78
+ ### Option 2: Direct Installation of vLLM
79
+
80
+ If your environment meets the following requirements:
81
+
82
+ - CUDA 12.1
83
+ - PyTorch 2.1
84
+
85
+ You can directly install vLLM
86
+
87
+ Installation command:
88
+ ```bash
89
+ pip install vllm
90
+ ```
91
+
92
+ 💡 If you are using other environment configurations, please refer to the [vLLM Installation Guide](https://docs.vllm.ai/en/latest/getting_started/installation.html)
93
+
94
+ ## 🚀 Starting the Service
95
+
96
+ ### Launch MiniMax-M1 Service
97
+
98
+ ```bash
99
+ export SAFETENSORS_FAST_GPU=1
100
+ export VLLM_USE_V1=0
101
+ python3 -m vllm.entrypoints.openai.api_server \
102
+ --model <model storage path> \
103
+ --tensor-parallel-size 8 \
104
+ --trust-remote-code \
105
+ --quantization experts_int8 \
106
+ --max_model_len 4096 \
107
+ --dtype bfloat16
108
+ ```
109
+
110
+ ### API Call Example
111
+
112
+ ```bash
113
+ curl http://localhost:8000/v1/chat/completions \
114
+ -H "Content-Type: application/json" \
115
+ -d '{
116
+ "model": "MiniMaxAI/MiniMax-M1",
117
+ "messages": [
118
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
119
+ {"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
120
+ ]
121
+ }'
122
+ ```
123
+
124
+ ## ❗ Common Issues
125
+
126
+ ### Module Loading Problems
127
+ If you encounter the following error:
128
+ ```
129
+ import vllm._C # noqa
130
+ ModuleNotFoundError: No module named 'vllm._C'
131
+ ```
132
+
133
+ Or
134
+
135
+ ```
136
+ MiniMax-M1 model is not currently supported
137
+ ```
138
+
139
+ We provide two solutions:
140
+
141
+ #### Solution 1: Copy Dependency Files
142
+ ```bash
143
+ cd <working directory>
144
+ git clone https://github.com/vllm-project/vllm.git
145
+ cd vllm
146
+ cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
147
+ cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
148
+ ```
149
+
150
+ #### Solution 2: Install from Source
151
+ ```bash
152
+ cd <working directory>
153
+ git clone https://github.com/vllm-project/vllm.git
154
+
155
+ cd vllm/
156
+ pip install -e .
157
+ ```
158
+
159
+ ## 📮 Getting Support
160
+
161
+ If you encounter any issues while deploying MiniMax-M1 model:
162
+ - Please check our official documentation
163
+ - Contact our technical support team through official channels
164
+ - Submit an [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues) on our GitHub repository
165
+
166
+ We will continuously optimize the deployment experience of this model and welcome your feedback!
vllm_deployment_guide_cn.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 MiniMax 模型 vLLM 部署指南
2
+
3
+ ## 📖 简介
4
+
5
+ 我们推荐使用 [vLLM](https://docs.vllm.ai/en/latest/) 来部署 [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k) 模型。经过我们的测试,vLLM 在部署这个模型时表现出色,具有以下特点:
6
+
7
+ - 🔥 卓越的服务吞吐量性能
8
+ - ⚡ 高效智能的内存管理机制
9
+ - 📦 强大的批量请求处理能力
10
+ - ⚙️ 深度优化的底层性能
11
+
12
+ MiniMax-M1 模型可在单台配备8个H800或8个H20 GPU的服务器上高效运行。在硬件配置方面,搭载8个H800 GPU的服务器可处理长达200万token的上下文输入,而配备8个H20 GPU的服务器则能够支持高达500万token的超长上下文处理能力。
13
+
14
+ ## 💾 获取 MiniMax 模型
15
+
16
+ ### MiniMax-M1 模型获取
17
+
18
+ 您可以从我们的官方 HuggingFace 仓库下载模型:[MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k)
19
+
20
+ 下载命令:
21
+ ```
22
+ pip install -U huggingface-hub
23
+ huggingface-cli download MiniMaxAI/MiniMax-M1
24
+
25
+ # 如果遇到网络问题,可以设置代理
26
+ export HF_ENDPOINT=https://hf-mirror.com
27
+ ```
28
+
29
+ 或者使用 git 下载:
30
+
31
+ ```bash
32
+ git lfs install
33
+ git clone https://huggingface.co/MiniMaxAI/MiniMax-M1-40k
34
+ ```
35
+
36
+ ⚠️ **重要提示**:请确保系统已安装 [Git LFS](https://git-lfs.github.com/),这对于完整下载模型权重文件是必需的。
37
+
38
+ ## 🛠️ 部署方案
39
+
40
+ ### 方案一:使用 Docker 部署(推荐)
41
+
42
+ 为确保部署环境的一致性和稳定性,我们推荐使用 Docker 进行部署。
43
+
44
+ ⚠️ **版本要求**:
45
+ - MiniMax-M1 模型需要 vLLM 0.8.3 或更高版本才能获得完整支持
46
+
47
+ 1. 获取容器镜像:
48
+ ```bash
49
+ docker pull vllm/vllm-openai:v0.8.3
50
+ ```
51
+
52
+ 2. 运行容器:
53
+ ```bash
54
+ # 设置环境变量
55
+ IMAGE=vllm/vllm-openai:v0.8.3
56
+ MODEL_DIR=<模型存放路径>
57
+ CODE_DIR=<代码路径>
58
+ NAME=MiniMaxImage
59
+
60
+ # Docker运行配置
61
+ DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
62
+
63
+ # 启动容器
64
+ sudo docker run -it \
65
+ -v $MODEL_DIR:$MODEL_DIR \
66
+ -v $CODE_DIR:$CODE_DIR \
67
+ --name $NAME \
68
+ $DOCKER_RUN_CMD \
69
+ $IMAGE /bin/bash
70
+ ```
71
+
72
+
73
+ ### 方案二:直接安装 vLLM
74
+
75
+ 如果您的环境满足以下要求:
76
+
77
+ - CUDA 12.1
78
+ - PyTorch 2.1
79
+
80
+ 可以直接安装 vLLM
81
+
82
+ 安装命令:
83
+ ```bash
84
+ pip install vllm
85
+ ```
86
+
87
+ 💡 如果您使用其他环境配置,请参考 [vLLM 安装指南](https://docs.vllm.ai/en/latest/getting_started/installation.html)
88
+
89
+ ## 🚀 启动服务
90
+
91
+ ### 启动 MiniMax-M1 服务
92
+
93
+ ```bash
94
+ export SAFETENSORS_FAST_GPU=1
95
+ export VLLM_USE_V1=0
96
+ python3 -m vllm.entrypoints.openai.api_server \
97
+ --model <模型存放路径> \
98
+ --tensor-parallel-size 8 \
99
+ --trust-remote-code \
100
+ --quantization experts_int8 \
101
+ --max_model_len 4096 \
102
+ --dtype bfloat16
103
+ ```
104
+
105
+ ### API 调用示例
106
+
107
+ ```bash
108
+ curl http://localhost:8000/v1/chat/completions \
109
+ -H "Content-Type: application/json" \
110
+ -d '{
111
+ "model": "MiniMaxAI/MiniMax-M1",
112
+ "messages": [
113
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
114
+ {"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
115
+ ]
116
+ }'
117
+ ```
118
+
119
+ ## ❗ 常见问题
120
+
121
+ ### 模块加载问题
122
+ 如果遇到以下错误:
123
+ ```
124
+ import vllm._C # noqa
125
+ ModuleNotFoundError: No module named 'vllm._C'
126
+ ```
127
+
128
+
129
+
130
+ ```
131
+ 当前并不支持 MiniMax-M1 模型
132
+ ```
133
+
134
+ 我们提供两种解决方案:
135
+
136
+ #### 解决方案一:复制依赖文件
137
+ ```bash
138
+ cd <工作目录>
139
+ git clone https://github.com/vllm-project/vllm.git
140
+ cd vllm
141
+ cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
142
+ cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
143
+ ```
144
+
145
+ #### 解决方案二:从源码安装
146
+ ```bash
147
+ cd <工作目录>
148
+ git clone https://github.com/vllm-project/vllm.git
149
+
150
+ cd vllm/
151
+ pip install -e .
152
+ ```
153
+
154
+ ## 📮 获取支持
155
+
156
+ 如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
157
+ - 请查看我们的官方文档
158
+ - 通过官方渠道联系我们的技术支持团队
159
+ - 在我们的 GitHub 仓库提交 [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues)
160
+
161
+ 我们会持续优化模型的部署体验,欢迎您的反馈!
vocab.json ADDED
The diff for this file is too large to render. See raw diff