upload config files
Browse files- LICENSE +201 -0
- config.json +12 -8
- configuration_minimax_m1.py +152 -0
- function_call_guide.md +270 -0
- function_call_guide_cn.md +267 -0
- main.py +106 -0
- merges.txt +0 -0
- modeling_minimax_m1.py +1701 -0
- tokenizer.json +0 -0
- tokenizer_config.json +10 -0
- transformers_deployment_guide.md +97 -0
- transformers_deployment_guide_cn.md +95 -0
- vllm_deployment_guide.md +166 -0
- vllm_deployment_guide_cn.md +161 -0
- vocab.json +0 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2025 MiniMax
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"attention_dropout": 0.0,
|
6 |
"attn_type_list": [
|
@@ -86,21 +86,24 @@
|
|
86 |
1
|
87 |
],
|
88 |
"auto_map": {
|
89 |
-
"AutoConfig": "
|
90 |
-
"AutoModelForCausalLM": "
|
91 |
},
|
92 |
-
"bos_token_id":
|
93 |
-
"eos_token_id":
|
94 |
"head_dim": 128,
|
95 |
"hidden_act": "silu",
|
96 |
"hidden_size": 6144,
|
97 |
"initializer_range": 0.02,
|
98 |
"intermediate_size": 9216,
|
99 |
"layernorm_full_attention_alpha": 3.5565588200778455,
|
|
|
100 |
"layernorm_linear_attention_alpha": 3.5565588200778455,
|
|
|
101 |
"layernorm_mlp_alpha": 3.5565588200778455,
|
102 |
-
"
|
103 |
-
"
|
|
|
104 |
"num_attention_heads": 64,
|
105 |
"num_experts_per_tok": 2,
|
106 |
"num_hidden_layers": 80,
|
@@ -117,7 +120,8 @@
|
|
117 |
"shared_moe_mode": "sigmoid",
|
118 |
"sliding_window": null,
|
119 |
"tie_word_embeddings": false,
|
120 |
-
"transformers_version": "4.
|
121 |
"use_cache": true,
|
122 |
"vocab_size": 200064
|
123 |
}
|
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"MiniMaxM1ForCausalLM"
|
4 |
],
|
5 |
"attention_dropout": 0.0,
|
6 |
"attn_type_list": [
|
|
|
86 |
1
|
87 |
],
|
88 |
"auto_map": {
|
89 |
+
"AutoConfig": "configuration_minimax_m1.MiniMaxM1Config",
|
90 |
+
"AutoModelForCausalLM": "modeling_minimax_m1.MiniMaxM1ForCausalLM"
|
91 |
},
|
92 |
+
"bos_token_id": null,
|
93 |
+
"eos_token_id": null,
|
94 |
"head_dim": 128,
|
95 |
"hidden_act": "silu",
|
96 |
"hidden_size": 6144,
|
97 |
"initializer_range": 0.02,
|
98 |
"intermediate_size": 9216,
|
99 |
"layernorm_full_attention_alpha": 3.5565588200778455,
|
100 |
+
"layernorm_full_attention_beta": 1.0,
|
101 |
"layernorm_linear_attention_alpha": 3.5565588200778455,
|
102 |
+
"layernorm_linear_attention_beta": 1.0,
|
103 |
"layernorm_mlp_alpha": 3.5565588200778455,
|
104 |
+
"layernorm_mlp_beta": 1.0,
|
105 |
+
"max_position_embeddings": 10240000,
|
106 |
+
"model_type": "minimax_m1",
|
107 |
"num_attention_heads": 64,
|
108 |
"num_experts_per_tok": 2,
|
109 |
"num_hidden_layers": 80,
|
|
|
120 |
"shared_moe_mode": "sigmoid",
|
121 |
"sliding_window": null,
|
122 |
"tie_word_embeddings": false,
|
123 |
+
"transformers_version": "4.45.2",
|
124 |
"use_cache": true,
|
125 |
"vocab_size": 200064
|
126 |
}
|
127 |
+
|
configuration_minimax_m1.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" MiniMaxM1 model configuration"""
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class MiniMaxM1Config(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
This is the configuration class to store the configuration of a [`MiniMaxM1Model`]. It is used to instantiate an
|
13 |
+
MiniMaxM1 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
14 |
+
with the defaults will yield a similar configuration to that of the MiniMaxM1.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
17 |
+
documentation from [`PretrainedConfig`] for more information.
|
18 |
+
|
19 |
+
|
20 |
+
Args:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
22 |
+
Vocabulary size of the MiniMaxM1 model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`MiniMaxM1Model`]
|
24 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
25 |
+
Dimension of the hidden representations.
|
26 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
27 |
+
Dimension of the MLP representations.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
33 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
34 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
35 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
36 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
37 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
38 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
39 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
40 |
+
The non-linear activation function (function or string) in the decoder.
|
41 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
42 |
+
The maximum sequence length that this model might ever be used with. MiniMaxM1's sliding window attention
|
43 |
+
allows sequence of up to 4096*32 tokens.
|
44 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
45 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
46 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
47 |
+
The epsilon used by the rms normalization layers.
|
48 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
49 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
50 |
+
relevant if `config.is_decoder=True`.
|
51 |
+
pad_token_id (`int`, *optional*):
|
52 |
+
The id of the padding token.
|
53 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
54 |
+
The id of the "beginning-of-sequence" token.
|
55 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
56 |
+
The id of the "end-of-sequence" token.
|
57 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether the model's input and output word embeddings should be tied.
|
59 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
60 |
+
The base period of the RoPE embeddings.
|
61 |
+
sliding_window (`int`, *optional*):
|
62 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the attention probabilities.
|
65 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
66 |
+
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
67 |
+
parameter
|
68 |
+
num_local_experts (`int`, *optional*, defaults to 8):
|
69 |
+
Number of experts per Sparse MLP layer.
|
70 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
72 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
73 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
74 |
+
The aux loss factor for the total loss.
|
75 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
76 |
+
Amount of noise to add to the router.
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import MiniMaxM1Model, MiniMaxM1Config
|
80 |
+
|
81 |
+
>>> # Initializing a MiniMaxM1 style configuration
|
82 |
+
>>> configuration = MiniMaxM1Config()
|
83 |
+
|
84 |
+
>>> # Initializing a model from the MiniMaxM1 style configuration
|
85 |
+
>>> model = MiniMaxM1Model(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "MiniMaxM1"
|
92 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=32000,
|
97 |
+
hidden_size=4096,
|
98 |
+
intermediate_size=14336,
|
99 |
+
num_hidden_layers=32,
|
100 |
+
num_attention_heads=32,
|
101 |
+
num_key_value_heads=8,
|
102 |
+
hidden_act="silu",
|
103 |
+
max_position_embeddings=4096 * 32,
|
104 |
+
initializer_range=0.02,
|
105 |
+
rms_norm_eps=1e-5,
|
106 |
+
use_cache=True,
|
107 |
+
pad_token_id=None,
|
108 |
+
bos_token_id=None,
|
109 |
+
eos_token_id=None,
|
110 |
+
tie_word_embeddings=False,
|
111 |
+
rope_theta=1e6,
|
112 |
+
sliding_window=None,
|
113 |
+
attention_dropout=0.0,
|
114 |
+
num_experts_per_tok=2,
|
115 |
+
num_local_experts=8,
|
116 |
+
output_router_logits=False,
|
117 |
+
router_aux_loss_coef=0.001,
|
118 |
+
router_jitter_noise=0.0,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
self.vocab_size = vocab_size
|
122 |
+
self.max_position_embeddings = max_position_embeddings
|
123 |
+
self.hidden_size = hidden_size
|
124 |
+
self.intermediate_size = intermediate_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.sliding_window = sliding_window
|
128 |
+
|
129 |
+
# for backward compatibility
|
130 |
+
if num_key_value_heads is None:
|
131 |
+
num_key_value_heads = num_attention_heads
|
132 |
+
|
133 |
+
self.num_key_value_heads = num_key_value_heads
|
134 |
+
self.hidden_act = hidden_act
|
135 |
+
self.initializer_range = initializer_range
|
136 |
+
self.rms_norm_eps = rms_norm_eps
|
137 |
+
self.use_cache = use_cache
|
138 |
+
self.rope_theta = rope_theta
|
139 |
+
self.attention_dropout = attention_dropout
|
140 |
+
|
141 |
+
self.num_experts_per_tok = num_experts_per_tok
|
142 |
+
self.num_local_experts = num_local_experts
|
143 |
+
self.output_router_logits = output_router_logits
|
144 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
145 |
+
self.router_jitter_noise = router_jitter_noise
|
146 |
+
super().__init__(
|
147 |
+
pad_token_id=pad_token_id,
|
148 |
+
bos_token_id=bos_token_id,
|
149 |
+
eos_token_id=eos_token_id,
|
150 |
+
tie_word_embeddings=tie_word_embeddings,
|
151 |
+
**kwargs,
|
152 |
+
)
|
function_call_guide.md
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MiniMax-M1 Function Call Guide
|
2 |
+
|
3 |
+
[FunctionCall中文使用指南](./function_call_guide_cn.md)
|
4 |
+
|
5 |
+
## 📖 Introduction
|
6 |
+
|
7 |
+
The MiniMax-M1 model supports function calling capabilities, enabling the model to identify when external functions need to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-M1.
|
8 |
+
|
9 |
+
## 🚀 Quick Start
|
10 |
+
|
11 |
+
### Using Chat Template
|
12 |
+
|
13 |
+
MiniMax-M1 uses a specific chat template format to handle function calls. The chat template is defined in `tokenizer_config.json`, and you can use it in your code through the template.
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
|
18 |
+
def get_default_tools():
|
19 |
+
return [
|
20 |
+
{
|
21 |
+
{
|
22 |
+
"name": "get_current_weather",
|
23 |
+
"description": "Get the latest weather for a location",
|
24 |
+
"parameters": {
|
25 |
+
"type": "object",
|
26 |
+
"properties": {
|
27 |
+
"location": {
|
28 |
+
"type": "string",
|
29 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
30 |
+
}
|
31 |
+
},
|
32 |
+
}
|
33 |
+
"required": ["location"],
|
34 |
+
"type": "object"
|
35 |
+
}
|
36 |
+
}
|
37 |
+
]
|
38 |
+
|
39 |
+
# Load model and tokenizer
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
+
prompt = "What's the weather like in Shanghai today?"
|
42 |
+
messages = [
|
43 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-M1 model."}]},
|
44 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
45 |
+
]
|
46 |
+
|
47 |
+
# Enable function call tools
|
48 |
+
tools = get_default_tools()
|
49 |
+
|
50 |
+
# Apply chat template and add tool definitions
|
51 |
+
text = tokenizer.apply_chat_template(
|
52 |
+
messages,
|
53 |
+
tokenize=False,
|
54 |
+
add_generation_prompt=True,
|
55 |
+
tools=tools
|
56 |
+
)
|
57 |
+
```
|
58 |
+
|
59 |
+
## 🛠️ Function Call Definition
|
60 |
+
|
61 |
+
### Function Structure
|
62 |
+
|
63 |
+
Function calls need to be defined in the `tools` field of the request body. Each function consists of the following components:
|
64 |
+
|
65 |
+
```json
|
66 |
+
{
|
67 |
+
"tools": [
|
68 |
+
{
|
69 |
+
"name": "search_web",
|
70 |
+
"description": "Search function.",
|
71 |
+
"parameters": {
|
72 |
+
"properties": {
|
73 |
+
"query_list": {
|
74 |
+
"description": "Keywords for search, with list element count of 1.",
|
75 |
+
"items": { "type": "string" },
|
76 |
+
"type": "array"
|
77 |
+
},
|
78 |
+
"query_tag": {
|
79 |
+
"description": "Classification of the query",
|
80 |
+
"items": { "type": "string" },
|
81 |
+
"type": "array"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"required": [ "query_list", "query_tag" ],
|
85 |
+
"type": "object"
|
86 |
+
}
|
87 |
+
}
|
88 |
+
]
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Field Descriptions:**
|
93 |
+
- `name`: Function name
|
94 |
+
- `description`: Function description
|
95 |
+
- `parameters`: Function parameter definition
|
96 |
+
- `properties`: Parameter property definitions, where key is the parameter name and value contains detailed parameter description
|
97 |
+
- `required`: List of required parameters
|
98 |
+
- `type`: Parameter type (usually "object")
|
99 |
+
|
100 |
+
### Internal Model Processing Format
|
101 |
+
|
102 |
+
When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
|
103 |
+
|
104 |
+
```
|
105 |
+
]~!b[]~b]system ai_setting=MiniMax AI
|
106 |
+
MiniMax AI is an AI assistant independently developed by MiniMax. [e~[
|
107 |
+
]~b]system tool_setting=tools
|
108 |
+
You are provided with these tools:
|
109 |
+
<tools>
|
110 |
+
{"name": "search_web", "description": "Search function.", "parameters": {"properties": {"query_list": {"description": "Keywords for search, with list element count of 1.", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "Classification of the query", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
111 |
+
</tools>
|
112 |
+
|
113 |
+
If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
|
114 |
+
<tool_calls>
|
115 |
+
{"name": <tool-name>, "arguments": <args-json-object>}
|
116 |
+
...
|
117 |
+
</tool_calls>[e~[
|
118 |
+
]~b]user name=User
|
119 |
+
When were the most recent launch events for OpenAI and Gemini?[e~[
|
120 |
+
]~b]ai name=MiniMax AI
|
121 |
+
```
|
122 |
+
|
123 |
+
### Model Output Format
|
124 |
+
|
125 |
+
The model outputs function calls in the following format:
|
126 |
+
|
127 |
+
```xml
|
128 |
+
<think>
|
129 |
+
Okay, I will search for the OpenAI and Gemini latest release.
|
130 |
+
</think>
|
131 |
+
<tool_calls>
|
132 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
|
133 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
|
134 |
+
</tool_calls>
|
135 |
+
```
|
136 |
+
|
137 |
+
## 📥 Function Call Result Processing
|
138 |
+
|
139 |
+
### Parsing Function Calls
|
140 |
+
|
141 |
+
You can use the following code to parse function calls from the model output:
|
142 |
+
|
143 |
+
```python
|
144 |
+
import re
|
145 |
+
import json
|
146 |
+
|
147 |
+
def parse_function_calls(content: str):
|
148 |
+
"""
|
149 |
+
Parse function calls from model output
|
150 |
+
"""
|
151 |
+
function_calls = []
|
152 |
+
|
153 |
+
# Match content within <tool_calls> tags
|
154 |
+
tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
|
155 |
+
tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
|
156 |
+
|
157 |
+
if not tool_calls_match:
|
158 |
+
return function_calls
|
159 |
+
|
160 |
+
tool_calls_content = tool_calls_match.group(1).strip()
|
161 |
+
|
162 |
+
# Parse each function call (one JSON object per line)
|
163 |
+
for line in tool_calls_content.split('\n'):
|
164 |
+
line = line.strip()
|
165 |
+
if not line:
|
166 |
+
continue
|
167 |
+
|
168 |
+
try:
|
169 |
+
# Parse JSON format function call
|
170 |
+
call_data = json.loads(line)
|
171 |
+
function_name = call_data.get("name")
|
172 |
+
arguments = call_data.get("arguments", {})
|
173 |
+
|
174 |
+
function_calls.append({
|
175 |
+
"name": function_name,
|
176 |
+
"arguments": arguments
|
177 |
+
})
|
178 |
+
|
179 |
+
print(f"Function call: {function_name}, Arguments: {arguments}")
|
180 |
+
|
181 |
+
except json.JSONDecodeError as e:
|
182 |
+
print(f"Parameter parsing failed: {line}, Error: {e}")
|
183 |
+
|
184 |
+
return function_calls
|
185 |
+
|
186 |
+
# Example: Handle weather query function
|
187 |
+
def execute_function_call(function_name: str, arguments: dict):
|
188 |
+
"""
|
189 |
+
Execute function call and return result
|
190 |
+
"""
|
191 |
+
if function_name == "get_current_weather":
|
192 |
+
location = arguments.get("location", "Unknown location")
|
193 |
+
# Build function execution result
|
194 |
+
return {
|
195 |
+
"role": "tool",
|
196 |
+
"name": function_name,
|
197 |
+
"content": json.dumps({
|
198 |
+
"location": location,
|
199 |
+
"temperature": "25",
|
200 |
+
"unit": "celsius",
|
201 |
+
"weather": "Sunny"
|
202 |
+
}, ensure_ascii=False)
|
203 |
+
}
|
204 |
+
elif function_name == "search_web":
|
205 |
+
query_list = arguments.get("query_list", [])
|
206 |
+
query_tag = arguments.get("query_tag", [])
|
207 |
+
# Simulate search results
|
208 |
+
return {
|
209 |
+
"role": "tool",
|
210 |
+
"name": function_name,
|
211 |
+
"content": f"Search keywords: {query_list}, Categories: {query_tag}\nSearch results: Relevant information found"
|
212 |
+
}
|
213 |
+
|
214 |
+
return None
|
215 |
+
```
|
216 |
+
|
217 |
+
### Returning Function Execution Results to the Model
|
218 |
+
|
219 |
+
After successfully parsing function calls, you should add the function execution results to the conversation history so that the model can access and utilize this information in subsequent interactions.
|
220 |
+
|
221 |
+
#### Single Result
|
222 |
+
|
223 |
+
If the model decides to call `search_web`, we suggest you to return the function result in the following format, with the `name` field set to the specific tool name.
|
224 |
+
|
225 |
+
```json
|
226 |
+
{
|
227 |
+
"data": [
|
228 |
+
{
|
229 |
+
"role": "tool",
|
230 |
+
"name": "search_web",
|
231 |
+
"content": "search_result"
|
232 |
+
}
|
233 |
+
]
|
234 |
+
}
|
235 |
+
```
|
236 |
+
|
237 |
+
Corresponding model input format:
|
238 |
+
```
|
239 |
+
]~b]tool name=search_web
|
240 |
+
search_result[e~[
|
241 |
+
```
|
242 |
+
|
243 |
+
|
244 |
+
#### Multiple Result
|
245 |
+
If the model decides to call `search_web` and `get_current_weather` at the same time, we suggest you to return the multiple function results in the following format, with the `name` field set to "tools", and use the `content` field to contain multiple results.
|
246 |
+
|
247 |
+
|
248 |
+
```json
|
249 |
+
{
|
250 |
+
"data": [
|
251 |
+
{
|
252 |
+
"role": "tool",
|
253 |
+
"name": "tools",
|
254 |
+
"content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
|
255 |
+
}
|
256 |
+
]
|
257 |
+
}
|
258 |
+
```
|
259 |
+
|
260 |
+
Corresponding model input format:
|
261 |
+
```
|
262 |
+
]~b]tool name=tools
|
263 |
+
Tool name: search_web
|
264 |
+
Tool result: test_result1
|
265 |
+
|
266 |
+
Tool name: get_current_weather
|
267 |
+
Tool result: test_result2[e~[
|
268 |
+
```
|
269 |
+
|
270 |
+
While we suggest following the above formats, as long as the model input is easy to understand, the specific values of `name` and `content` is entirely up to the caller.
|
function_call_guide_cn.md
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MiniMax-M1 函数调用(Function Call)功能指南
|
2 |
+
|
3 |
+
## 📖 简介
|
4 |
+
|
5 |
+
MiniMax-M1 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-M1 的函数调用功能。
|
6 |
+
|
7 |
+
## 🚀 快速开始
|
8 |
+
|
9 |
+
### 聊天模板使用
|
10 |
+
|
11 |
+
MiniMax-M1 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中,你可以在代码中通过 template 来进行使用。
|
12 |
+
|
13 |
+
```python
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
|
16 |
+
def get_default_tools():
|
17 |
+
return [
|
18 |
+
{
|
19 |
+
{
|
20 |
+
"name": "get_current_weather",
|
21 |
+
"description": "Get the latest weather for a location",
|
22 |
+
"parameters": {
|
23 |
+
"type": "object",
|
24 |
+
"properties": {
|
25 |
+
"location": {
|
26 |
+
"type": "string",
|
27 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
28 |
+
}
|
29 |
+
},
|
30 |
+
}
|
31 |
+
"required": ["location"],
|
32 |
+
"type": "object"
|
33 |
+
}
|
34 |
+
}
|
35 |
+
]
|
36 |
+
|
37 |
+
# 加载模型和分词器
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
+
prompt = "What's the weather like in Shanghai today?"
|
40 |
+
messages = [
|
41 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-M1 model."}]},
|
42 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
43 |
+
]
|
44 |
+
|
45 |
+
# 启用函数调用工具
|
46 |
+
tools = get_default_tools()
|
47 |
+
|
48 |
+
# 应用聊天模板,并加入工具定义
|
49 |
+
text = tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True,
|
53 |
+
tools=tools
|
54 |
+
)
|
55 |
+
```
|
56 |
+
|
57 |
+
## 🛠️ 函数调用的定义
|
58 |
+
|
59 |
+
### 函数结构体
|
60 |
+
|
61 |
+
函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成:
|
62 |
+
|
63 |
+
```json
|
64 |
+
{
|
65 |
+
"tools": [
|
66 |
+
{
|
67 |
+
"name": "search_web",
|
68 |
+
"description": "搜索函数。",
|
69 |
+
"parameters": {
|
70 |
+
"properties": {
|
71 |
+
"query_list": {
|
72 |
+
"description": "进行搜索的关键词,列表元素个数为1。",
|
73 |
+
"items": { "type": "string" },
|
74 |
+
"type": "array"
|
75 |
+
},
|
76 |
+
"query_tag": {
|
77 |
+
"description": "query的分类",
|
78 |
+
"items": { "type": "string" },
|
79 |
+
"type": "array"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"required": [ "query_list", "query_tag" ],
|
83 |
+
"type": "object"
|
84 |
+
}
|
85 |
+
}
|
86 |
+
]
|
87 |
+
}
|
88 |
+
```
|
89 |
+
|
90 |
+
**字段说明:**
|
91 |
+
- `name`: 函数名称
|
92 |
+
- `description`: 函数功能描述
|
93 |
+
- `parameters`: 函数参数定义
|
94 |
+
- `properties`: 参数属性定义,key 是参数名,value 包含参数的详细描述
|
95 |
+
- `required`: 必填参数列表
|
96 |
+
- `type`: 参数类型(通常为 "object")
|
97 |
+
|
98 |
+
### 模型内部处理格式
|
99 |
+
|
100 |
+
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
|
101 |
+
|
102 |
+
```
|
103 |
+
]~!b[]~b]system ai_setting=MiniMax AI
|
104 |
+
MiniMax AI是由上海稀宇科技有限公司(MiniMax)自主研发的AI助理。[e~[
|
105 |
+
]~b]system tool_setting=tools
|
106 |
+
You are provided with these tools:
|
107 |
+
<tools>
|
108 |
+
{"name": "search_web", "description": "搜索函数。", "parameters": {"properties": {"query_list": {"description": "进行搜索的关键词,列表元素个数为1。", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "query的分类", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
109 |
+
</tools>
|
110 |
+
|
111 |
+
If you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:
|
112 |
+
<tool_calls>
|
113 |
+
{"name": <tool-name>, "arguments": <args-json-object>}
|
114 |
+
...
|
115 |
+
</tool_calls>[e~[
|
116 |
+
]~b]user name=用户
|
117 |
+
OpenAI 和 Gemini 的最近一次发布会都是什么时候?[e~[
|
118 |
+
]~b]ai name=MiniMax AI
|
119 |
+
```
|
120 |
+
|
121 |
+
### 模型输出格式
|
122 |
+
|
123 |
+
模型会以以下格式输出函数调用:
|
124 |
+
|
125 |
+
```xml
|
126 |
+
<think>
|
127 |
+
Okay, I will search for the OpenAI and Gemini latest release.
|
128 |
+
</think>
|
129 |
+
<tool_calls>
|
130 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"OpenAI\" \"latest\" \"release\""]}}
|
131 |
+
{"name": "search_web", "arguments": {"query_tag": ["technology", "events"], "query_list": ["\"Gemini\" \"latest\" \"release\""]}}
|
132 |
+
</tool_calls>
|
133 |
+
```
|
134 |
+
|
135 |
+
## 📥 函数调用结果处理
|
136 |
+
|
137 |
+
### 解析函数调用
|
138 |
+
|
139 |
+
您可以使用以下代码解析模型输出的函数调用:
|
140 |
+
|
141 |
+
```python
|
142 |
+
import re
|
143 |
+
import json
|
144 |
+
|
145 |
+
def parse_function_calls(content: str):
|
146 |
+
"""
|
147 |
+
解析模型输出中的函数调用
|
148 |
+
"""
|
149 |
+
function_calls = []
|
150 |
+
|
151 |
+
# 匹配 <tool_calls> 标签内的内容
|
152 |
+
tool_calls_pattern = r"<tool_calls>(.*?)</tool_calls>"
|
153 |
+
tool_calls_match = re.search(tool_calls_pattern, content, re.DOTALL)
|
154 |
+
|
155 |
+
if not tool_calls_match:
|
156 |
+
return function_calls
|
157 |
+
|
158 |
+
tool_calls_content = tool_calls_match.group(1).strip()
|
159 |
+
|
160 |
+
# 解析每个函数调用(每行一个JSON对象)
|
161 |
+
for line in tool_calls_content.split('\n'):
|
162 |
+
line = line.strip()
|
163 |
+
if not line:
|
164 |
+
continue
|
165 |
+
|
166 |
+
try:
|
167 |
+
# 解析JSON格式的函数调用
|
168 |
+
call_data = json.loads(line)
|
169 |
+
function_name = call_data.get("name")
|
170 |
+
arguments = call_data.get("arguments", {})
|
171 |
+
|
172 |
+
function_calls.append({
|
173 |
+
"name": function_name,
|
174 |
+
"arguments": arguments
|
175 |
+
})
|
176 |
+
|
177 |
+
print(f"调用函数: {function_name}, 参数: {arguments}")
|
178 |
+
|
179 |
+
except json.JSONDecodeError as e:
|
180 |
+
print(f"参数解析失败: {line}, 错误: {e}")
|
181 |
+
|
182 |
+
return function_calls
|
183 |
+
|
184 |
+
# 示例:处理天气查询函数
|
185 |
+
def execute_function_call(function_name: str, arguments: dict):
|
186 |
+
"""
|
187 |
+
执行函数调用并返回结果
|
188 |
+
"""
|
189 |
+
if function_name == "get_current_weather":
|
190 |
+
location = arguments.get("location", "未知位置")
|
191 |
+
# 构建函数执行结果
|
192 |
+
return {
|
193 |
+
"role": "tool",
|
194 |
+
"name": function_name,
|
195 |
+
"content": json.dumps({
|
196 |
+
"location": location,
|
197 |
+
"temperature": "25",
|
198 |
+
"unit": "celsius",
|
199 |
+
"weather": "晴朗"
|
200 |
+
}, ensure_ascii=False)
|
201 |
+
}
|
202 |
+
elif function_name == "search_web":
|
203 |
+
query_list = arguments.get("query_list", [])
|
204 |
+
query_tag = arguments.get("query_tag", [])
|
205 |
+
# 模拟搜索结果
|
206 |
+
return {
|
207 |
+
"role": "tool",
|
208 |
+
"name": function_name,
|
209 |
+
"content": f"搜索关键词: {query_list}, 分类: {query_tag}\n搜索结果: 相关信息已找到"
|
210 |
+
}
|
211 |
+
|
212 |
+
return None
|
213 |
+
```
|
214 |
+
|
215 |
+
### 将函数执行结果返回给模型
|
216 |
+
|
217 |
+
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
|
218 |
+
|
219 |
+
#### 单个结果
|
220 |
+
|
221 |
+
假如模型调用了 `search_web` 函数,您可以参考如下格式添加执行结果,`name` 字段为具体的函数名称。
|
222 |
+
|
223 |
+
```json
|
224 |
+
{
|
225 |
+
"data": [
|
226 |
+
{
|
227 |
+
"role": "tool",
|
228 |
+
"name": "search_web",
|
229 |
+
"content": "search_result"
|
230 |
+
}
|
231 |
+
]
|
232 |
+
}
|
233 |
+
```
|
234 |
+
|
235 |
+
对应如下的模型输入格式:
|
236 |
+
```
|
237 |
+
]~b]tool name=search_web
|
238 |
+
search_result[e~[
|
239 |
+
```
|
240 |
+
|
241 |
+
|
242 |
+
#### 多个结果
|
243 |
+
假如模型同时调用了 `search_web` 和 `get_current_weather` 函数,您可以参考如下格式添加执行结果,`name` 字段为"tools",`content`包含多个结果。
|
244 |
+
|
245 |
+
```json
|
246 |
+
{
|
247 |
+
"data": [
|
248 |
+
{
|
249 |
+
"role": "tool",
|
250 |
+
"name": "tools",
|
251 |
+
"content": "Tool name: search_web\nTool result: test_result1\n\nTool name: get_current_weather\nTool result: test_result2"
|
252 |
+
}
|
253 |
+
]
|
254 |
+
}
|
255 |
+
```
|
256 |
+
|
257 |
+
对应如下的模型输入格式:
|
258 |
+
```
|
259 |
+
]~b]tool name=tools
|
260 |
+
Tool name: search_web
|
261 |
+
Tool result: test_result1
|
262 |
+
|
263 |
+
Tool name: get_current_weather
|
264 |
+
Tool result: test_result2[e~[
|
265 |
+
```
|
266 |
+
|
267 |
+
虽然我们建议您参考以上格式,但只要返回给模型的输入易于理解,`name` 和 `content` 的具体内容完全由您自主决定。
|
main.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig
|
2 |
+
import torch
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
"""
|
6 |
+
usage:
|
7 |
+
export SAFETENSORS_FAST_GPU=1
|
8 |
+
python main.py --quant_type int8 --world_size 8 --model_id <model_path>
|
9 |
+
"""
|
10 |
+
|
11 |
+
def generate_quanto_config(hf_config: AutoConfig, quant_type: str):
|
12 |
+
QUANT_TYPE_MAP = {
|
13 |
+
"default": None,
|
14 |
+
"int8": QuantoConfig(
|
15 |
+
weights="int8",
|
16 |
+
modules_to_not_convert=[
|
17 |
+
"lm_head",
|
18 |
+
"embed_tokens",
|
19 |
+
] + [f"model.layers.{i}.coefficient" for i in range(hf_config.num_hidden_layers)]
|
20 |
+
+ [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.num_hidden_layers)]
|
21 |
+
),
|
22 |
+
}
|
23 |
+
return QUANT_TYPE_MAP[quant_type]
|
24 |
+
|
25 |
+
|
26 |
+
def parse_args():
|
27 |
+
parser = argparse.ArgumentParser()
|
28 |
+
parser.add_argument("--quant_type", type=str, default="default", choices=["default", "int8"])
|
29 |
+
parser.add_argument("--model_id", type=str, required=True)
|
30 |
+
parser.add_argument("--world_size", type=int, required=True)
|
31 |
+
return parser.parse_args()
|
32 |
+
|
33 |
+
|
34 |
+
def check_params(args, hf_config: AutoConfig):
|
35 |
+
if args.quant_type == "int8":
|
36 |
+
assert args.world_size >= 8, "int8 weight-only quantization requires at least 8 GPUs"
|
37 |
+
|
38 |
+
assert hf_config.num_hidden_layers % args.world_size == 0, f"num_hidden_layers({hf_config.num_hidden_layers}) must be divisible by world_size({args.world_size})"
|
39 |
+
|
40 |
+
|
41 |
+
@torch.no_grad()
|
42 |
+
def main():
|
43 |
+
args = parse_args()
|
44 |
+
print("\n=============== Argument ===============")
|
45 |
+
for key in vars(args):
|
46 |
+
print(f"{key}: {vars(args)[key]}")
|
47 |
+
print("========================================")
|
48 |
+
|
49 |
+
model_id = args.model_id
|
50 |
+
|
51 |
+
hf_config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
|
52 |
+
check_params(args, hf_config)
|
53 |
+
quantization_config = generate_quanto_config(hf_config, args.quant_type)
|
54 |
+
|
55 |
+
device_map = {
|
56 |
+
'model.embed_tokens': 'cuda:0',
|
57 |
+
'model.norm': f'cuda:{args.world_size - 1}',
|
58 |
+
'lm_head': f'cuda:{args.world_size - 1}'
|
59 |
+
}
|
60 |
+
layers_per_device = hf_config.num_hidden_layers // args.world_size
|
61 |
+
for i in range(args.world_size):
|
62 |
+
for j in range(layers_per_device):
|
63 |
+
device_map[f'model.layers.{i * layers_per_device + j}'] = f'cuda:{i}'
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
66 |
+
message = [
|
67 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
68 |
+
{"role": "user", "content": [{"type": "text", "text": "Hello, what is the weather today?"}]}
|
69 |
+
]
|
70 |
+
tools = [
|
71 |
+
{"name": "get_location", "description": "Get the location of the user.", "parameters": {"type": "object", "properties": {}}},
|
72 |
+
{"name": "get_weather", "description": "Get the weather of a city.", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The name of the city"}}}},
|
73 |
+
{"name": "get_news", "description": "Get the news.", "parameters": {"type": "object", "properties": {"domain": {"type": "string", "description": "The domain of the news"}}}}
|
74 |
+
]
|
75 |
+
text = tokenizer.apply_chat_template(
|
76 |
+
message,
|
77 |
+
tools,
|
78 |
+
tokenize=False,
|
79 |
+
add_generation_prompt=True
|
80 |
+
)
|
81 |
+
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
82 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
model_id,
|
84 |
+
torch_dtype="bfloat16",
|
85 |
+
device_map=device_map,
|
86 |
+
quantization_config=quantization_config,
|
87 |
+
trust_remote_code=True,
|
88 |
+
offload_buffers=True,
|
89 |
+
)
|
90 |
+
generation_config = GenerationConfig(
|
91 |
+
max_new_tokens=20,
|
92 |
+
eos_token_id=200020,
|
93 |
+
use_cache=True,
|
94 |
+
)
|
95 |
+
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
|
96 |
+
print(f"generated_ids: {generated_ids}")
|
97 |
+
generated_ids = [
|
98 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
99 |
+
]
|
100 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
101 |
+
print(response)
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
main()
|
105 |
+
|
106 |
+
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_minimax_m1.py
ADDED
@@ -0,0 +1,1701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch MiniMaxM1 model."""
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
import os
|
7 |
+
import copy
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.cache_utils import Cache, DynamicCache
|
16 |
+
from transformers.modeling_attn_mask_utils import (
|
17 |
+
_prepare_4d_causal_attention_mask,
|
18 |
+
)
|
19 |
+
from transformers.modeling_outputs import (
|
20 |
+
MoeCausalLMOutputWithPast,
|
21 |
+
MoeModelOutputWithPast,
|
22 |
+
SequenceClassifierOutputWithPast,
|
23 |
+
)
|
24 |
+
from transformers.modeling_utils import PreTrainedModel
|
25 |
+
from transformers.utils import (
|
26 |
+
add_start_docstrings,
|
27 |
+
add_start_docstrings_to_model_forward,
|
28 |
+
is_flash_attn_2_available,
|
29 |
+
is_flash_attn_greater_or_equal_2_10,
|
30 |
+
logging,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
34 |
+
from .configuration_minimax_m1 import MiniMaxM1Config
|
35 |
+
|
36 |
+
if is_flash_attn_2_available():
|
37 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
38 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
39 |
+
|
40 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
41 |
+
|
42 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
43 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
44 |
+
if is_torch_fx_available():
|
45 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
46 |
+
|
47 |
+
use_triton = eval(os.environ.get("use_triton", default="False"))
|
48 |
+
debug = eval(os.environ.get("debug", default="False"))
|
49 |
+
do_eval = eval(os.environ.get("do_eval", default="False"))
|
50 |
+
eval_and_not_generate = eval(os.environ.get("eval_and_not_generate", default="False"))
|
51 |
+
BLOCK = 256
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CONFIG_FOR_DOC = "MiniMaxM1Config"
|
56 |
+
|
57 |
+
|
58 |
+
def get_activation_fn(activation):
|
59 |
+
if debug:
|
60 |
+
logger.info(f"activation: {activation}")
|
61 |
+
if activation == "gelu":
|
62 |
+
return F.gelu
|
63 |
+
elif activation == "relu":
|
64 |
+
return F.relu
|
65 |
+
elif activation == "elu":
|
66 |
+
return F.elu
|
67 |
+
elif activation == "sigmoid":
|
68 |
+
return F.sigmoid
|
69 |
+
elif activation == "exp":
|
70 |
+
|
71 |
+
def f(x):
|
72 |
+
with torch.no_grad():
|
73 |
+
x_max = torch.max(x, dim=-1, keepdims=True).values
|
74 |
+
y = torch.exp(x - x_max)
|
75 |
+
|
76 |
+
return y
|
77 |
+
|
78 |
+
return f
|
79 |
+
elif activation == "leak":
|
80 |
+
return F.leaky_relu
|
81 |
+
elif activation == "1+elu":
|
82 |
+
|
83 |
+
def f(x):
|
84 |
+
return 1 + F.elu(x)
|
85 |
+
|
86 |
+
return f
|
87 |
+
elif activation == "2+elu":
|
88 |
+
|
89 |
+
def f(x):
|
90 |
+
return 2 + F.elu(x)
|
91 |
+
|
92 |
+
return f
|
93 |
+
elif activation == "silu" or activation == "swish":
|
94 |
+
return F.silu
|
95 |
+
elif activation == "sine":
|
96 |
+
return torch.sin
|
97 |
+
else:
|
98 |
+
logger.info(
|
99 |
+
f"activation: does not support {activation}, use Identity!!!")
|
100 |
+
return lambda x: x
|
101 |
+
|
102 |
+
|
103 |
+
def load_balancing_loss_func(
|
104 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2,
|
105 |
+
attention_mask: Optional[torch.Tensor] = None
|
106 |
+
) -> float:
|
107 |
+
r"""
|
108 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
109 |
+
|
110 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
111 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
112 |
+
experts is too unbalanced.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
116 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
117 |
+
shape [batch_size X sequence_length, num_experts].
|
118 |
+
attention_mask (`torch.Tensor`, None):
|
119 |
+
The attention_mask used in forward function
|
120 |
+
shape [batch_size X sequence_length] if not None.
|
121 |
+
num_experts (`int`, *optional*):
|
122 |
+
Number of experts
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
The auxiliary loss.
|
126 |
+
"""
|
127 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
128 |
+
return 0
|
129 |
+
|
130 |
+
if isinstance(gate_logits, tuple):
|
131 |
+
compute_device = gate_logits[0].device
|
132 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
133 |
+
|
134 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
135 |
+
|
136 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
137 |
+
|
138 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
139 |
+
|
140 |
+
if attention_mask is None:
|
141 |
+
# Compute the percentage of tokens routed to each experts
|
142 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
143 |
+
|
144 |
+
# Compute the average probability of routing to these experts
|
145 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
146 |
+
else:
|
147 |
+
batch_size, sequence_length = attention_mask.shape
|
148 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
149 |
+
|
150 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
151 |
+
expert_attention_mask = (
|
152 |
+
attention_mask[None, :, :, None, None]
|
153 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
154 |
+
.reshape(-1, top_k, num_experts)
|
155 |
+
.to(compute_device)
|
156 |
+
)
|
157 |
+
|
158 |
+
# Compute the percentage of tokens routed to each experts
|
159 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
160 |
+
expert_attention_mask, dim=0
|
161 |
+
)
|
162 |
+
|
163 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
164 |
+
router_per_expert_attention_mask = (
|
165 |
+
attention_mask[None, :, :, None]
|
166 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
167 |
+
.reshape(-1, num_experts)
|
168 |
+
.to(compute_device)
|
169 |
+
)
|
170 |
+
|
171 |
+
# Compute the average probability of routing to these experts
|
172 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
173 |
+
router_per_expert_attention_mask, dim=0
|
174 |
+
)
|
175 |
+
|
176 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
177 |
+
return overall_loss * num_experts
|
178 |
+
|
179 |
+
|
180 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
181 |
+
def _get_unpad_data(attention_mask):
|
182 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
183 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
184 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
185 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
186 |
+
return (
|
187 |
+
indices,
|
188 |
+
cu_seqlens,
|
189 |
+
max_seqlen_in_batch,
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
class GLU(nn.Module):
|
194 |
+
|
195 |
+
def __init__(self, d1, d2, bias=False):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
self.l1 = nn.Linear(d1, d2, bias=bias)
|
199 |
+
self.l2 = nn.Linear(d1, d2, bias=bias)
|
200 |
+
self.l3 = nn.Linear(d2, d1, bias=bias)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
o1 = self.l1(x)
|
204 |
+
o2 = self.l2(x)
|
205 |
+
output = o1 * o2
|
206 |
+
output = self.l3(output)
|
207 |
+
return output
|
208 |
+
|
209 |
+
|
210 |
+
class MiniMaxM1LightningAttention(nn.Module):
|
211 |
+
def __init__(self, config: MiniMaxM1Config, layer_idx: Optional[int] = None):
|
212 |
+
super().__init__()
|
213 |
+
bias = False
|
214 |
+
self.hidden_size = config.hidden_size
|
215 |
+
self.num_heads = config.num_attention_heads
|
216 |
+
self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
|
217 |
+
|
218 |
+
self.out_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=bias)
|
219 |
+
self.act = get_activation_fn(config.hidden_act)
|
220 |
+
self.norm = MiniMaxM1RMSNorm(self.head_dim * self.num_heads)
|
221 |
+
|
222 |
+
self.qkv_proj = nn.Linear(self.hidden_size, 3 * self.head_dim * self.num_heads, bias=bias)
|
223 |
+
self.output_gate = nn.Linear(self.hidden_size, self.head_dim * self.num_heads, bias=bias)
|
224 |
+
|
225 |
+
# for inference only
|
226 |
+
self.offset = 0
|
227 |
+
self.layer_idx = layer_idx
|
228 |
+
|
229 |
+
def forward(
|
230 |
+
self,
|
231 |
+
hidden_states,
|
232 |
+
attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
|
233 |
+
output_attentions: bool = False,
|
234 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
235 |
+
use_cache: bool = False,
|
236 |
+
slope_rate: Optional[torch.Tensor] = None,
|
237 |
+
**kwargs
|
238 |
+
):
|
239 |
+
if (not self.training) and (not do_eval):
|
240 |
+
return self.inference(
|
241 |
+
hidden_states,
|
242 |
+
attn_mask,
|
243 |
+
output_attentions,
|
244 |
+
past_key_value,
|
245 |
+
use_cache,
|
246 |
+
slope_rate,
|
247 |
+
)
|
248 |
+
|
249 |
+
def inference(
|
250 |
+
self,
|
251 |
+
x,
|
252 |
+
attn_mask: Optional[torch.Tensor] = None, # (b, n)
|
253 |
+
output_attentions: bool = False,
|
254 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
255 |
+
use_cache: bool = False,
|
256 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
257 |
+
):
|
258 |
+
# x: b n d
|
259 |
+
b, n, d = x.shape
|
260 |
+
# linear map
|
261 |
+
qkv = self.act(self.qkv_proj(x))
|
262 |
+
new_shape = qkv.size()[:-1] + (self.num_heads, -1)
|
263 |
+
qkv = qkv.view(*new_shape)
|
264 |
+
q, k, v = torch.split(qkv, [self.head_dim] * 3, dim=3)
|
265 |
+
q = q.transpose(1, 2)
|
266 |
+
k = k.transpose(1, 2)
|
267 |
+
v = v.transpose(1, 2)
|
268 |
+
|
269 |
+
if past_key_value is None:
|
270 |
+
self.offset = q.shape[-2]
|
271 |
+
else:
|
272 |
+
self.offset += 1
|
273 |
+
|
274 |
+
# for align with metaseq
|
275 |
+
ratio = torch.exp(-slope_rate)
|
276 |
+
|
277 |
+
# only use for the first time
|
278 |
+
if past_key_value is None:
|
279 |
+
slope_rate = slope_rate.to(torch.float32)
|
280 |
+
if attn_mask is not None:
|
281 |
+
v = v.masked_fill((1 - attn_mask).unsqueeze(1).unsqueeze(-1).to(torch.bool), 0)
|
282 |
+
NUM_BLOCK = (n + BLOCK - 1) // BLOCK
|
283 |
+
b, h, n, d = q.shape
|
284 |
+
e = v.shape[-1]
|
285 |
+
# other
|
286 |
+
array = torch.arange(BLOCK).to(q) + 1
|
287 |
+
q_decay = torch.exp(-slope_rate * array.reshape(-1, 1))
|
288 |
+
k_decay = torch.exp(-slope_rate * (BLOCK - array.reshape(-1, 1)))
|
289 |
+
index = array[:, None] - array[None, :]
|
290 |
+
s_index = slope_rate * index[
|
291 |
+
None,
|
292 |
+
None,
|
293 |
+
]
|
294 |
+
s_index = torch.where(index >= 0, -s_index, float("-inf"))
|
295 |
+
diag_decay = torch.exp(s_index)
|
296 |
+
|
297 |
+
kv = torch.zeros(b, h, d, e).to(torch.float32).to(q.device)
|
298 |
+
output = torch.empty((b, h, n, e), dtype=q.dtype, device=q.device)
|
299 |
+
for i in range(NUM_BLOCK):
|
300 |
+
si = i * BLOCK
|
301 |
+
ei = min(si + BLOCK, n)
|
302 |
+
m = ei - si
|
303 |
+
qi = q[:, :, si:ei].contiguous()
|
304 |
+
ki = k[:, :, si:ei].contiguous()
|
305 |
+
vi = v[:, :, si:ei].contiguous()
|
306 |
+
qkv_none_diag = torch.matmul(qi * q_decay[:, :m], kv).to(torch.float32)
|
307 |
+
|
308 |
+
# diag
|
309 |
+
qk = torch.matmul(qi, ki.transpose(-1, -2)).to(torch.float32) * diag_decay[:, :, :m, :m]
|
310 |
+
qkv_diag = torch.matmul(qk, vi.to(torch.float32))
|
311 |
+
block_decay = torch.exp(-slope_rate * m)
|
312 |
+
output[:, :, si:ei] = qkv_none_diag + qkv_diag
|
313 |
+
kv = block_decay * kv + torch.matmul((ki * k_decay[:, -m:]).transpose(-1, -2).to(vi.dtype), vi)
|
314 |
+
|
315 |
+
else:
|
316 |
+
kv = past_key_value
|
317 |
+
output = []
|
318 |
+
for i in range(n):
|
319 |
+
kv = ratio * kv + torch.einsum(
|
320 |
+
"... n d, ... n e -> ... d e",
|
321 |
+
k[:, :, i:i + 1],
|
322 |
+
v[:, :, i:i + 1],
|
323 |
+
)
|
324 |
+
qkv = torch.einsum("... n e, ... e d -> ... n d", q[:, :, i:i + 1], kv.to(q.dtype))
|
325 |
+
output.append(qkv)
|
326 |
+
output = torch.concat(output, dim=-2)
|
327 |
+
# reshape
|
328 |
+
output = rearrange(output, "b h n d -> b n (h d)")
|
329 |
+
# normalize
|
330 |
+
output = self.norm(output)
|
331 |
+
# gate
|
332 |
+
output = F.sigmoid(self.output_gate(x)) * output
|
333 |
+
# outproj
|
334 |
+
output = self.out_proj(output)
|
335 |
+
|
336 |
+
attn_weights = None
|
337 |
+
|
338 |
+
return output, attn_weights, kv
|
339 |
+
|
340 |
+
|
341 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MiniMaxM1
|
342 |
+
class MiniMaxM1RMSNorm(nn.Module):
|
343 |
+
def __init__(self, hidden_size, eps=1e-6):
|
344 |
+
"""
|
345 |
+
MiniMaxM1RMSNorm is equivalent to T5LayerNorm
|
346 |
+
"""
|
347 |
+
super().__init__()
|
348 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
349 |
+
self.variance_epsilon = eps
|
350 |
+
|
351 |
+
def forward(self, hidden_states):
|
352 |
+
input_dtype = hidden_states.dtype
|
353 |
+
hidden_states = hidden_states.to(torch.float32)
|
354 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
355 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
356 |
+
return self.weight * hidden_states.to(input_dtype)
|
357 |
+
|
358 |
+
|
359 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->MiniMaxM1
|
360 |
+
class MiniMaxM1RotaryEmbedding(nn.Module):
|
361 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
362 |
+
super().__init__()
|
363 |
+
|
364 |
+
self.dim = dim
|
365 |
+
self.max_position_embeddings = max_position_embeddings
|
366 |
+
self.base = base
|
367 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
368 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
369 |
+
|
370 |
+
# Build here to make `torch.jit.trace` work.
|
371 |
+
self._set_cos_sin_cache(
|
372 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
|
373 |
+
)
|
374 |
+
|
375 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
376 |
+
self.max_seq_len_cached = seq_len
|
377 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
378 |
+
|
379 |
+
freqs = torch.outer(t, self.inv_freq)
|
380 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
381 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
382 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
383 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
384 |
+
|
385 |
+
def forward(self, x, seq_len=None):
|
386 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
387 |
+
if seq_len > self.max_seq_len_cached:
|
388 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
389 |
+
|
390 |
+
return (
|
391 |
+
self.cos_cached[:seq_len].to(dtype=torch.float32),
|
392 |
+
self.sin_cached[:seq_len].to(dtype=torch.float32),
|
393 |
+
)
|
394 |
+
|
395 |
+
|
396 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
397 |
+
def rotate_half(x):
|
398 |
+
"""Rotates half the hidden dims of the input."""
|
399 |
+
x1 = x[..., : x.shape[-1] // 2]
|
400 |
+
x2 = x[..., x.shape[-1] // 2:]
|
401 |
+
return torch.cat((-x2, x1), dim=-1)
|
402 |
+
|
403 |
+
|
404 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
405 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
406 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
407 |
+
|
408 |
+
Args:
|
409 |
+
q (`torch.Tensor`): The query tensor.
|
410 |
+
k (`torch.Tensor`): The key tensor.
|
411 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
412 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
413 |
+
position_ids (`torch.Tensor`):
|
414 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
415 |
+
used to pass offsetted position ids when working with a KV-cache.
|
416 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
417 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
418 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
419 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
420 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
421 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
422 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
423 |
+
Returns:
|
424 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
425 |
+
"""
|
426 |
+
dtype = q.dtype
|
427 |
+
rot_dim = cos.shape[-1]
|
428 |
+
q_, q_pass = q[..., :rot_dim], q[..., rot_dim:]
|
429 |
+
k_, k_pass = k[..., :rot_dim], k[..., rot_dim:]
|
430 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
431 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
432 |
+
q_embed = (q_ * cos) + (rotate_half(q_) * sin)
|
433 |
+
k_embed = (k_ * cos) + (rotate_half(k_) * sin)
|
434 |
+
return torch.cat((q_embed, q_pass), dim=-1).to(dtype), torch.cat((k_embed, k_pass), dim=-1).to(dtype)
|
435 |
+
|
436 |
+
|
437 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
438 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
439 |
+
"""
|
440 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
441 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
442 |
+
"""
|
443 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
444 |
+
if n_rep == 1:
|
445 |
+
return hidden_states
|
446 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
447 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
448 |
+
|
449 |
+
|
450 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->MiniMaxM1
|
451 |
+
class MiniMaxM1Attention(nn.Module):
|
452 |
+
"""
|
453 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
454 |
+
and "Generating Long Sequences with Sparse Transformers".
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, config: MiniMaxM1Config, layer_idx: Optional[int] = None):
|
458 |
+
super().__init__()
|
459 |
+
self.config = config
|
460 |
+
self.layer_idx = layer_idx
|
461 |
+
if layer_idx is None:
|
462 |
+
logger.warning_once(
|
463 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
464 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
465 |
+
"when creating this class."
|
466 |
+
)
|
467 |
+
|
468 |
+
self.hidden_size = config.hidden_size
|
469 |
+
self.num_heads = config.num_attention_heads
|
470 |
+
self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
|
471 |
+
self.num_key_value_heads = config.num_key_value_heads
|
472 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
473 |
+
self.max_position_embeddings = config.max_position_embeddings
|
474 |
+
self.rope_theta = config.rope_theta
|
475 |
+
self.is_causal = True
|
476 |
+
self.attention_dropout = config.attention_dropout
|
477 |
+
|
478 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
479 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
480 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
481 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
482 |
+
self.rotary_dim = getattr(config, 'rotary_dim', self.head_dim)
|
483 |
+
|
484 |
+
self.rotary_emb = MiniMaxM1RotaryEmbedding(
|
485 |
+
self.rotary_dim,
|
486 |
+
max_position_embeddings=self.max_position_embeddings,
|
487 |
+
base=self.rope_theta,
|
488 |
+
)
|
489 |
+
|
490 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
491 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
492 |
+
|
493 |
+
def forward(
|
494 |
+
self,
|
495 |
+
hidden_states: torch.Tensor,
|
496 |
+
attention_mask: Optional[torch.Tensor] = None,
|
497 |
+
position_ids: Optional[torch.LongTensor] = None,
|
498 |
+
past_key_value: Optional[Cache] = None,
|
499 |
+
output_attentions: bool = False,
|
500 |
+
use_cache: bool = False,
|
501 |
+
**kwargs,
|
502 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
503 |
+
if "padding_mask" in kwargs:
|
504 |
+
warnings.warn(
|
505 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
506 |
+
)
|
507 |
+
bsz, q_len, _ = hidden_states.size()
|
508 |
+
|
509 |
+
query_states = self.q_proj(hidden_states)
|
510 |
+
key_states = self.k_proj(hidden_states)
|
511 |
+
value_states = self.v_proj(hidden_states)
|
512 |
+
|
513 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
514 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
515 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
516 |
+
|
517 |
+
kv_seq_len = key_states.shape[-2]
|
518 |
+
if past_key_value is not None:
|
519 |
+
if self.layer_idx is None:
|
520 |
+
raise ValueError(
|
521 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
522 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
523 |
+
"with a layer index."
|
524 |
+
)
|
525 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
526 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
527 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
528 |
+
|
529 |
+
if past_key_value is not None:
|
530 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
531 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
532 |
+
|
533 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
534 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
535 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
536 |
+
|
537 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
538 |
+
|
539 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
540 |
+
raise ValueError(
|
541 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
542 |
+
f" {attn_weights.size()}"
|
543 |
+
)
|
544 |
+
|
545 |
+
if attention_mask is not None:
|
546 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
547 |
+
raise ValueError(
|
548 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
549 |
+
)
|
550 |
+
|
551 |
+
attn_weights = attn_weights + attention_mask
|
552 |
+
|
553 |
+
# upcast attention to fp32
|
554 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
555 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
556 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
557 |
+
|
558 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
559 |
+
raise ValueError(
|
560 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
561 |
+
f" {attn_output.size()}"
|
562 |
+
)
|
563 |
+
|
564 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
565 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
566 |
+
|
567 |
+
attn_output = self.o_proj(attn_output)
|
568 |
+
|
569 |
+
if not output_attentions:
|
570 |
+
attn_weights = None
|
571 |
+
|
572 |
+
return attn_output, attn_weights, past_key_value
|
573 |
+
|
574 |
+
|
575 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->MiniMaxM1
|
576 |
+
class MiniMaxM1FlashAttention2(MiniMaxM1Attention):
|
577 |
+
"""
|
578 |
+
MiniMaxM1 flash attention module. This module inherits from `MiniMaxM1Attention` as the weights of the module stays
|
579 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
580 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
581 |
+
"""
|
582 |
+
|
583 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
584 |
+
def __init__(self, *args, **kwargs):
|
585 |
+
super().__init__(*args, **kwargs)
|
586 |
+
|
587 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
588 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
589 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
590 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
591 |
+
|
592 |
+
def forward(
|
593 |
+
self,
|
594 |
+
hidden_states: torch.Tensor,
|
595 |
+
attention_mask: Optional[torch.Tensor] = None,
|
596 |
+
position_ids: Optional[torch.LongTensor] = None,
|
597 |
+
past_key_value: Optional[Union[Cache, Tuple[torch.Tensor]]] = None,
|
598 |
+
output_attentions: bool = False,
|
599 |
+
use_cache: bool = False,
|
600 |
+
**kwargs,
|
601 |
+
):
|
602 |
+
if "padding_mask" in kwargs:
|
603 |
+
warnings.warn(
|
604 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
605 |
+
)
|
606 |
+
|
607 |
+
# overwrite attention_mask with padding_mask
|
608 |
+
attention_mask = kwargs.pop("padding_mask")
|
609 |
+
bsz, q_len, _ = hidden_states.size()
|
610 |
+
|
611 |
+
query_states = self.q_proj(hidden_states)
|
612 |
+
key_states = self.k_proj(hidden_states)
|
613 |
+
value_states = self.v_proj(hidden_states)
|
614 |
+
|
615 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
616 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
617 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
618 |
+
|
619 |
+
kv_seq_len = key_states.shape[-2]
|
620 |
+
if past_key_value is not None:
|
621 |
+
kv_seq_len += past_key_value[0].shape[-3]
|
622 |
+
|
623 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
624 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
625 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
626 |
+
|
627 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
628 |
+
|
629 |
+
use_sliding_windows = (
|
630 |
+
_flash_supports_window_size
|
631 |
+
and getattr(self.config, "sliding_window", None) is not None
|
632 |
+
and kv_seq_len > self.config.sliding_window
|
633 |
+
)
|
634 |
+
|
635 |
+
if not _flash_supports_window_size:
|
636 |
+
logger.warning_once(
|
637 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
638 |
+
" make sure to upgrade flash-attn library."
|
639 |
+
)
|
640 |
+
|
641 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
642 |
+
|
643 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
644 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
645 |
+
# cast them back in float16 just to be sure everything works as expected.
|
646 |
+
input_dtype = query_states.dtype
|
647 |
+
if input_dtype == torch.float32:
|
648 |
+
if torch.is_autocast_enabled():
|
649 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
650 |
+
# Handle the case where the model is quantized
|
651 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
652 |
+
target_dtype = self.config._pre_quantization_dtype
|
653 |
+
else:
|
654 |
+
target_dtype = self.q_proj.weight.dtype
|
655 |
+
|
656 |
+
logger.warning_once(
|
657 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
658 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
659 |
+
f" {target_dtype}."
|
660 |
+
)
|
661 |
+
|
662 |
+
query_states = query_states.to(target_dtype)
|
663 |
+
key_states = key_states.to(target_dtype)
|
664 |
+
value_states = value_states.to(target_dtype)
|
665 |
+
|
666 |
+
# Reshape to the expected shape for Flash Attention
|
667 |
+
query_states = query_states.transpose(1, 2)
|
668 |
+
key_states = key_states.transpose(1, 2)
|
669 |
+
value_states = value_states.transpose(1, 2)
|
670 |
+
|
671 |
+
if past_key_value is not None:
|
672 |
+
# reuse k, v, for evaluation only
|
673 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=-3)
|
674 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=-3)
|
675 |
+
|
676 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
677 |
+
|
678 |
+
attn_output = self._flash_attention_forward(
|
679 |
+
query_states,
|
680 |
+
key_states,
|
681 |
+
value_states,
|
682 |
+
attention_mask,
|
683 |
+
q_len,
|
684 |
+
dropout=dropout_rate,
|
685 |
+
use_sliding_windows=use_sliding_windows,
|
686 |
+
)
|
687 |
+
|
688 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
689 |
+
attn_output = self.o_proj(attn_output)
|
690 |
+
|
691 |
+
if not output_attentions:
|
692 |
+
attn_weights = None
|
693 |
+
|
694 |
+
return attn_output, attn_weights, past_key_value
|
695 |
+
|
696 |
+
def _flash_attention_forward(
|
697 |
+
self,
|
698 |
+
query_states,
|
699 |
+
key_states,
|
700 |
+
value_states,
|
701 |
+
attention_mask,
|
702 |
+
query_length,
|
703 |
+
dropout=0.0,
|
704 |
+
softmax_scale=None,
|
705 |
+
use_sliding_windows=False,
|
706 |
+
):
|
707 |
+
"""
|
708 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
709 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
710 |
+
|
711 |
+
Args:
|
712 |
+
query_states (`torch.Tensor`):
|
713 |
+
Input query states to be passed to Flash Attention API
|
714 |
+
key_states (`torch.Tensor`):
|
715 |
+
Input key states to be passed to Flash Attention API
|
716 |
+
value_states (`torch.Tensor`):
|
717 |
+
Input value states to be passed to Flash Attention API
|
718 |
+
attention_mask (`torch.Tensor`):
|
719 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
720 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
721 |
+
dropout (`float`):
|
722 |
+
Attention dropout
|
723 |
+
softmax_scale (`float`, *optional*):
|
724 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
725 |
+
use_sliding_windows (`bool`, *optional*):
|
726 |
+
Whether to activate sliding window attention.
|
727 |
+
"""
|
728 |
+
if not self._flash_attn_uses_top_left_mask:
|
729 |
+
causal = self.is_causal
|
730 |
+
else:
|
731 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
732 |
+
causal = self.is_causal and query_length != 1
|
733 |
+
|
734 |
+
# Contains at least one padding token in the sequence
|
735 |
+
if attention_mask is not None:
|
736 |
+
batch_size = query_states.shape[0]
|
737 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
738 |
+
query_states, key_states, value_states, attention_mask, query_length
|
739 |
+
)
|
740 |
+
|
741 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
742 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
743 |
+
|
744 |
+
if not use_sliding_windows:
|
745 |
+
attn_output_unpad = flash_attn_varlen_func(
|
746 |
+
query_states,
|
747 |
+
key_states,
|
748 |
+
value_states,
|
749 |
+
cu_seqlens_q=cu_seqlens_q,
|
750 |
+
cu_seqlens_k=cu_seqlens_k,
|
751 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
752 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
753 |
+
dropout_p=dropout,
|
754 |
+
softmax_scale=softmax_scale,
|
755 |
+
causal=causal,
|
756 |
+
)
|
757 |
+
else:
|
758 |
+
attn_output_unpad = flash_attn_varlen_func(
|
759 |
+
query_states,
|
760 |
+
key_states,
|
761 |
+
value_states,
|
762 |
+
cu_seqlens_q=cu_seqlens_q,
|
763 |
+
cu_seqlens_k=cu_seqlens_k,
|
764 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
765 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
766 |
+
dropout_p=dropout,
|
767 |
+
softmax_scale=softmax_scale,
|
768 |
+
causal=causal,
|
769 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
770 |
+
)
|
771 |
+
|
772 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
773 |
+
else:
|
774 |
+
if not use_sliding_windows:
|
775 |
+
attn_output = flash_attn_func(
|
776 |
+
query_states,
|
777 |
+
key_states,
|
778 |
+
value_states,
|
779 |
+
dropout,
|
780 |
+
softmax_scale=softmax_scale,
|
781 |
+
causal=causal,
|
782 |
+
)
|
783 |
+
else:
|
784 |
+
attn_output = flash_attn_func(
|
785 |
+
query_states,
|
786 |
+
key_states,
|
787 |
+
value_states,
|
788 |
+
dropout,
|
789 |
+
softmax_scale=softmax_scale,
|
790 |
+
causal=causal,
|
791 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
792 |
+
)
|
793 |
+
|
794 |
+
return attn_output
|
795 |
+
|
796 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
797 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
798 |
+
|
799 |
+
# On the first iteration we need to properly re-create the padding mask
|
800 |
+
# by slicing it on the proper place
|
801 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
802 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
803 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len:]
|
804 |
+
|
805 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
806 |
+
|
807 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
808 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
809 |
+
|
810 |
+
if query_length == kv_seq_len:
|
811 |
+
query_layer = index_first_axis(
|
812 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
813 |
+
)
|
814 |
+
cu_seqlens_q = cu_seqlens_k
|
815 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
816 |
+
indices_q = indices_k
|
817 |
+
elif query_length == 1:
|
818 |
+
max_seqlen_in_batch_q = 1
|
819 |
+
cu_seqlens_q = torch.arange(
|
820 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
821 |
+
) # There is a memcpy here, that is very bad.
|
822 |
+
indices_q = cu_seqlens_q[:-1]
|
823 |
+
query_layer = query_layer.squeeze(1)
|
824 |
+
else:
|
825 |
+
# The -q_len: slice assumes left padding.
|
826 |
+
attention_mask = attention_mask[:, -query_length:]
|
827 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
828 |
+
|
829 |
+
return (
|
830 |
+
query_layer,
|
831 |
+
key_layer,
|
832 |
+
value_layer,
|
833 |
+
indices_q,
|
834 |
+
(cu_seqlens_q, cu_seqlens_k),
|
835 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
836 |
+
)
|
837 |
+
|
838 |
+
|
839 |
+
class MiniMaxM1MLP(nn.Module):
|
840 |
+
def __init__(self, config):
|
841 |
+
super().__init__()
|
842 |
+
self.config = config
|
843 |
+
self.hidden_size = config.hidden_size
|
844 |
+
self.intermediate_size = config.intermediate_size
|
845 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
846 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
847 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
848 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
849 |
+
|
850 |
+
def forward(self, x):
|
851 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
852 |
+
return down_proj
|
853 |
+
|
854 |
+
|
855 |
+
class MiniMaxM1BlockSparseTop2MLP(nn.Module):
|
856 |
+
def __init__(self, config: MiniMaxM1Config):
|
857 |
+
super().__init__()
|
858 |
+
self.ffn_dim = config.intermediate_size
|
859 |
+
self.hidden_dim = config.hidden_size
|
860 |
+
|
861 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
862 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
863 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
864 |
+
|
865 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
866 |
+
|
867 |
+
def forward(self, hidden_states):
|
868 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
869 |
+
current_hidden_states = self.w2(current_hidden_states)
|
870 |
+
return current_hidden_states
|
871 |
+
|
872 |
+
|
873 |
+
class MiniMaxM1BLockSparseTop2MLP(MiniMaxM1BlockSparseTop2MLP):
|
874 |
+
def __init__(self, *args, **kwargs):
|
875 |
+
logger.warning_once(
|
876 |
+
"MiniMaxM1BLockSparseTop2MLP is deprecated by MiniMaxM1BlockSparseTop2MLP and will be removed in v4.40."
|
877 |
+
)
|
878 |
+
super().__init__(*args, **kwargs)
|
879 |
+
|
880 |
+
|
881 |
+
class MiniMaxM1SparseMoeBlock(nn.Module):
|
882 |
+
"""
|
883 |
+
This implementation is
|
884 |
+
strictly equivalent to standard MoE with full capacity (no
|
885 |
+
dropped tokens). It's faster since it formulates MoE operations
|
886 |
+
in terms of block-sparse operations to accomodate imbalanced
|
887 |
+
assignments of tokens to experts, whereas standard MoE either
|
888 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
889 |
+
capacity factor to number of experts and thus waste computation
|
890 |
+
and memory on padding.
|
891 |
+
"""
|
892 |
+
|
893 |
+
def __init__(self, config):
|
894 |
+
super().__init__()
|
895 |
+
self.hidden_dim = config.hidden_size
|
896 |
+
self.ffn_dim = config.intermediate_size
|
897 |
+
self.num_experts = config.num_local_experts
|
898 |
+
self.top_k = config.num_experts_per_tok
|
899 |
+
|
900 |
+
# gating
|
901 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
902 |
+
|
903 |
+
self.experts = nn.ModuleList([MiniMaxM1BlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
904 |
+
|
905 |
+
# Jitter parameters
|
906 |
+
self.jitter_noise = config.router_jitter_noise
|
907 |
+
|
908 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
909 |
+
""" """
|
910 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
911 |
+
if self.training and self.jitter_noise > 0:
|
912 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
913 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
914 |
+
# router_logits: (batch * sequence_length, n_experts)
|
915 |
+
router_logits = self.gate(hidden_states)
|
916 |
+
|
917 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
918 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
919 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
920 |
+
# we cast back to the input dtype
|
921 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
922 |
+
|
923 |
+
final_hidden_states = torch.zeros(
|
924 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
925 |
+
)
|
926 |
+
|
927 |
+
# One hot encode the selected experts to create an expert mask
|
928 |
+
# this will be used to easily index which expert is going to be sollicitated
|
929 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
930 |
+
|
931 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
932 |
+
for expert_idx in range(self.num_experts):
|
933 |
+
expert_layer = self.experts[expert_idx]
|
934 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
935 |
+
|
936 |
+
# Index the correct hidden states and compute the expert hidden state for
|
937 |
+
# the current expert. We need to make sure to multiply the output hidden
|
938 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
939 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
940 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
941 |
+
|
942 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
943 |
+
# the `top_x` tensor here.
|
944 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
945 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
946 |
+
return final_hidden_states, router_logits
|
947 |
+
|
948 |
+
|
949 |
+
class MiniMaxM1DecoderLayer(nn.Module):
|
950 |
+
def __init__(self, config: MiniMaxM1Config, layer_idx: int):
|
951 |
+
super().__init__()
|
952 |
+
self.config = config
|
953 |
+
self.hidden_size = config.hidden_size
|
954 |
+
|
955 |
+
self.self_attn = self.build_attn(config, layer_idx)
|
956 |
+
|
957 |
+
self.layer_idx = layer_idx
|
958 |
+
|
959 |
+
self.block_sparse_moe = MiniMaxM1SparseMoeBlock(config)
|
960 |
+
self.input_layernorm = MiniMaxM1RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
961 |
+
self.post_attention_layernorm = MiniMaxM1RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
962 |
+
|
963 |
+
self.postnorm = getattr(config, 'postnorm', False)
|
964 |
+
self.layernorm_attention_alpha = getattr(config, 'layernorm_linear_attention_alpha', 1) \
|
965 |
+
if config.attention_type == 0 else getattr(config, 'layernorm_full_attention_alpha', 1)
|
966 |
+
self.layernorm_attention_beta = getattr(config, 'layernorm_linear_attention_beta', 1) \
|
967 |
+
if config.attention_type == 0 else getattr(config, 'layernorm_full_attention_beta', 1)
|
968 |
+
self.layernorm_mlp_alpha = getattr(config, 'layernorm_mlp_alpha', 1)
|
969 |
+
self.layernorm_mlp_beta = getattr(config, 'layernorm_mlp_beta', 1)
|
970 |
+
|
971 |
+
shared_intermediate = getattr(config, 'shared_intermediate_size', 0)
|
972 |
+
self.shared_moe = False
|
973 |
+
if shared_intermediate > 0:
|
974 |
+
self.shared_moe = True
|
975 |
+
self.shared_mlp = MiniMaxM1MLP(config)
|
976 |
+
self.coefficient = torch.nn.Linear(self.hidden_size, 1, bias=False)
|
977 |
+
|
978 |
+
def build_attn(self, config, layer_idx):
|
979 |
+
if config.attention_type == 0:
|
980 |
+
Attention_module = MiniMaxM1LightningAttention
|
981 |
+
else:
|
982 |
+
Attention_module = MiniMaxM1FlashAttention2
|
983 |
+
|
984 |
+
return Attention_module(
|
985 |
+
config,
|
986 |
+
layer_idx
|
987 |
+
)
|
988 |
+
|
989 |
+
def forward(
|
990 |
+
self,
|
991 |
+
hidden_states: torch.Tensor,
|
992 |
+
attention_mask: Optional[torch.Tensor] = None,
|
993 |
+
position_ids: Optional[torch.LongTensor] = None,
|
994 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
995 |
+
output_attentions: Optional[bool] = False,
|
996 |
+
output_router_logits: Optional[bool] = False,
|
997 |
+
use_cache: Optional[bool] = False,
|
998 |
+
slope_rate: Optional[float] = None,
|
999 |
+
**kwargs,
|
1000 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1001 |
+
if "padding_mask" in kwargs:
|
1002 |
+
warnings.warn(
|
1003 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1004 |
+
)
|
1005 |
+
"""
|
1006 |
+
Args:
|
1007 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1008 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1009 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1010 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1011 |
+
output_attentions (`bool`, *optional*):
|
1012 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1013 |
+
returned tensors for more detail.
|
1014 |
+
output_router_logits (`bool`, *optional*):
|
1015 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1016 |
+
should not be returned during inference.
|
1017 |
+
use_cache (`bool`, *optional*):
|
1018 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1019 |
+
(see `past_key_values`).
|
1020 |
+
"""
|
1021 |
+
|
1022 |
+
residual = hidden_states
|
1023 |
+
|
1024 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1025 |
+
if self.postnorm:
|
1026 |
+
residual = hidden_states
|
1027 |
+
|
1028 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1029 |
+
hidden_states=hidden_states,
|
1030 |
+
position_ids=position_ids,
|
1031 |
+
attn_mask=attention_mask,
|
1032 |
+
past_key_value=past_key_value,
|
1033 |
+
output_attentions=output_attentions,
|
1034 |
+
use_cache=use_cache,
|
1035 |
+
slope_rate=slope_rate,
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
hidden_states = residual * self.layernorm_attention_alpha \
|
1039 |
+
+ hidden_states * self.layernorm_attention_beta
|
1040 |
+
|
1041 |
+
# Fully Connected
|
1042 |
+
residual = hidden_states
|
1043 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1044 |
+
if self.postnorm:
|
1045 |
+
residual = hidden_states
|
1046 |
+
|
1047 |
+
moe_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
1048 |
+
if self.shared_moe:
|
1049 |
+
output_mlp = self.shared_mlp(hidden_states)
|
1050 |
+
weight_fp32 = self.coefficient.weight.float()
|
1051 |
+
coef = hidden_states.to(torch.float32) @ weight_fp32.T
|
1052 |
+
coef = torch.nn.functional.sigmoid(coef).to(hidden_states.dtype)
|
1053 |
+
hidden_states = moe_hidden_states * (1 - coef) + output_mlp * coef
|
1054 |
+
else:
|
1055 |
+
hidden_states = moe_hidden_states
|
1056 |
+
|
1057 |
+
hidden_states = residual * self.layernorm_mlp_alpha \
|
1058 |
+
+ hidden_states * self.layernorm_mlp_beta
|
1059 |
+
|
1060 |
+
outputs = (hidden_states,)
|
1061 |
+
|
1062 |
+
if output_attentions:
|
1063 |
+
outputs += (self_attn_weights,)
|
1064 |
+
|
1065 |
+
if use_cache:
|
1066 |
+
outputs += (present_key_value,)
|
1067 |
+
|
1068 |
+
if output_router_logits:
|
1069 |
+
outputs += (router_logits,)
|
1070 |
+
|
1071 |
+
return outputs
|
1072 |
+
|
1073 |
+
|
1074 |
+
MIXTRAL_START_DOCSTRING = r"""
|
1075 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1076 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1077 |
+
etc.)
|
1078 |
+
|
1079 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1080 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1081 |
+
and behavior.
|
1082 |
+
|
1083 |
+
Parameters:
|
1084 |
+
config ([`MiniMaxM1Config`]):
|
1085 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1086 |
+
load the weights associated with the model, only the configuration. Check out the
|
1087 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1088 |
+
"""
|
1089 |
+
|
1090 |
+
|
1091 |
+
@add_start_docstrings(
|
1092 |
+
"The bare MiniMaxM1 Model outputting raw hidden-states without any specific head on top.",
|
1093 |
+
MIXTRAL_START_DOCSTRING,
|
1094 |
+
)
|
1095 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->MiniMaxM1
|
1096 |
+
class MiniMaxM1PreTrainedModel(PreTrainedModel):
|
1097 |
+
config_class = MiniMaxM1Config
|
1098 |
+
base_model_prefix = "model"
|
1099 |
+
supports_gradient_checkpointing = True
|
1100 |
+
_no_split_modules = ["MiniMaxM1DecoderLayer"]
|
1101 |
+
_skip_keys_device_placement = "past_key_values"
|
1102 |
+
_supports_flash_attn_2 = True
|
1103 |
+
_supports_sdpa = True
|
1104 |
+
|
1105 |
+
def _init_weights(self, module):
|
1106 |
+
std = self.config.initializer_range
|
1107 |
+
if isinstance(module, nn.Linear):
|
1108 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1109 |
+
if module.bias is not None:
|
1110 |
+
module.bias.data.zero_()
|
1111 |
+
elif isinstance(module, nn.Embedding):
|
1112 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1113 |
+
if module.padding_idx is not None:
|
1114 |
+
module.weight.data[module.padding_idx].zero_()
|
1115 |
+
|
1116 |
+
|
1117 |
+
MIXTRAL_INPUTS_DOCSTRING = r"""
|
1118 |
+
Args:
|
1119 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1120 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1121 |
+
it.
|
1122 |
+
|
1123 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1124 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1125 |
+
|
1126 |
+
[What are input IDs?](../glossary#input-ids)
|
1127 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1128 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1129 |
+
|
1130 |
+
- 1 for tokens that are **not masked**,
|
1131 |
+
- 0 for tokens that are **masked**.
|
1132 |
+
|
1133 |
+
[What are attention masks?](../glossary#attention-mask)
|
1134 |
+
|
1135 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1136 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1137 |
+
|
1138 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1139 |
+
`past_key_values`).
|
1140 |
+
|
1141 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1142 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1143 |
+
information on the default strategy.
|
1144 |
+
|
1145 |
+
- 1 indicates the head is **not masked**,
|
1146 |
+
- 0 indicates the head is **masked**.
|
1147 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1148 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1149 |
+
config.n_positions - 1]`.
|
1150 |
+
|
1151 |
+
[What are position IDs?](../glossary#position-ids)
|
1152 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1153 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1154 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1155 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1156 |
+
|
1157 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1158 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1159 |
+
|
1160 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1161 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1162 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1163 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1164 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1165 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1166 |
+
model's internal embedding lookup matrix.
|
1167 |
+
use_cache (`bool`, *optional*):
|
1168 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1169 |
+
`past_key_values`).
|
1170 |
+
output_attentions (`bool`, *optional*):
|
1171 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1172 |
+
tensors for more detail.
|
1173 |
+
output_hidden_states (`bool`, *optional*):
|
1174 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1175 |
+
more detail.
|
1176 |
+
output_router_logits (`bool`, *optional*):
|
1177 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1178 |
+
should not be returned during inference.
|
1179 |
+
return_dict (`bool`, *optional*):
|
1180 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1181 |
+
"""
|
1182 |
+
|
1183 |
+
|
1184 |
+
@add_start_docstrings(
|
1185 |
+
"The bare MiniMaxM1 Model outputting raw hidden-states without any specific head on top.",
|
1186 |
+
MIXTRAL_START_DOCSTRING,
|
1187 |
+
)
|
1188 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->MiniMaxM1
|
1189 |
+
class MiniMaxM1Model(MiniMaxM1PreTrainedModel):
|
1190 |
+
"""
|
1191 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniMaxM1DecoderLayer`]
|
1192 |
+
|
1193 |
+
Args:
|
1194 |
+
config: MiniMaxM1Config
|
1195 |
+
"""
|
1196 |
+
|
1197 |
+
def __init__(self, config: MiniMaxM1Config):
|
1198 |
+
super().__init__(config)
|
1199 |
+
self.padding_idx = config.pad_token_id
|
1200 |
+
self.vocab_size = config.vocab_size
|
1201 |
+
|
1202 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1203 |
+
self.attn_type_list = config.attn_type_list
|
1204 |
+
config_copy = copy.deepcopy(config)
|
1205 |
+
|
1206 |
+
self.layers = nn.ModuleList([])
|
1207 |
+
for i in range(config.num_hidden_layers):
|
1208 |
+
_config = copy.deepcopy(config)
|
1209 |
+
if self.attn_type_list[i] == 0:
|
1210 |
+
_config._attn_implementation = 'linear_attention'
|
1211 |
+
_config.attention_type = 0
|
1212 |
+
else:
|
1213 |
+
_config._attn_implementation = config_copy._attn_implementation
|
1214 |
+
_config.attention_type = 1
|
1215 |
+
self.layers.append(MiniMaxM1DecoderLayer(_config, i))
|
1216 |
+
|
1217 |
+
self._attn_implementation = config_copy._attn_implementation
|
1218 |
+
self.norm = MiniMaxM1RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1219 |
+
|
1220 |
+
self.gradient_checkpointing = False
|
1221 |
+
self.slopes = self._build_slope_tensor(config.num_attention_heads)
|
1222 |
+
# mask
|
1223 |
+
self._linear_attn_mask = torch.empty(0)
|
1224 |
+
|
1225 |
+
# Initialize weights and apply final processing
|
1226 |
+
self.post_init()
|
1227 |
+
|
1228 |
+
def get_input_embeddings(self):
|
1229 |
+
return self.embed_tokens
|
1230 |
+
|
1231 |
+
def set_input_embeddings(self, value):
|
1232 |
+
self.embed_tokens = value
|
1233 |
+
|
1234 |
+
@staticmethod
|
1235 |
+
def _build_slope_tensor(n_attention_heads: int):
|
1236 |
+
|
1237 |
+
def get_slopes(n):
|
1238 |
+
|
1239 |
+
def get_slopes_power_of_2(n):
|
1240 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
1241 |
+
ratio = start
|
1242 |
+
return [start * ratio ** i for i in range(n)]
|
1243 |
+
|
1244 |
+
if math.log2(n).is_integer():
|
1245 |
+
return get_slopes_power_of_2(
|
1246 |
+
n) # In the paper, we only train models that have 2^a heads for some a. This function has
|
1247 |
+
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
1248 |
+
closest_power_of_2 = 2 ** math.floor(
|
1249 |
+
math.log2(n)) # when the number of heads is not a power of 2, we use this workaround.
|
1250 |
+
return (get_slopes_power_of_2(closest_power_of_2)
|
1251 |
+
+ get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
|
1252 |
+
|
1253 |
+
# h, 1, 1
|
1254 |
+
slopes = torch.tensor(get_slopes(n_attention_heads), dtype=torch.float32).reshape(n_attention_heads, 1, 1)
|
1255 |
+
|
1256 |
+
return slopes
|
1257 |
+
|
1258 |
+
# Ignore copy
|
1259 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
1260 |
+
def forward(
|
1261 |
+
self,
|
1262 |
+
input_ids: torch.LongTensor = None,
|
1263 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1264 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1265 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1266 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1267 |
+
use_cache: Optional[bool] = None,
|
1268 |
+
output_attentions: Optional[bool] = None,
|
1269 |
+
output_hidden_states: Optional[bool] = None,
|
1270 |
+
output_router_logits: Optional[bool] = None,
|
1271 |
+
return_dict: Optional[bool] = None,
|
1272 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1273 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1274 |
+
output_router_logits = (
|
1275 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1276 |
+
)
|
1277 |
+
output_hidden_states = (
|
1278 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1279 |
+
)
|
1280 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1281 |
+
|
1282 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1283 |
+
|
1284 |
+
# retrieve input_ids and inputs_embeds
|
1285 |
+
if input_ids is not None and inputs_embeds is not None:
|
1286 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1287 |
+
elif input_ids is not None:
|
1288 |
+
batch_size, seq_length = input_ids.shape
|
1289 |
+
default_device = input_ids.device
|
1290 |
+
elif inputs_embeds is not None:
|
1291 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1292 |
+
default_device = inputs_embeds.device
|
1293 |
+
else:
|
1294 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1295 |
+
|
1296 |
+
past_key_values_length = 0
|
1297 |
+
|
1298 |
+
if self.gradient_checkpointing and self.training:
|
1299 |
+
if use_cache:
|
1300 |
+
logger.warning_once(
|
1301 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1302 |
+
)
|
1303 |
+
use_cache = False
|
1304 |
+
|
1305 |
+
seq_length_with_past = seq_length
|
1306 |
+
if past_key_values is not None:
|
1307 |
+
for idx in range(len(past_key_values)):
|
1308 |
+
if self.attn_type_list[idx] == 1:
|
1309 |
+
past_key_values_length = past_key_values[idx][0].shape[-3]
|
1310 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1311 |
+
break
|
1312 |
+
|
1313 |
+
if position_ids is None:
|
1314 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1315 |
+
position_ids = torch.arange(
|
1316 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1317 |
+
)
|
1318 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1319 |
+
else:
|
1320 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1321 |
+
|
1322 |
+
if inputs_embeds is None:
|
1323 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1324 |
+
|
1325 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1326 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1327 |
+
if is_padding_right:
|
1328 |
+
raise ValueError(
|
1329 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1330 |
+
" this may lead to unexpected behaviour for Flash Attention version of MiniMaxM1. Make sure to "
|
1331 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1332 |
+
)
|
1333 |
+
slope_rates = [self.slopes.to(default_device) for _ in range(len(self.layers))]
|
1334 |
+
hidden_states = inputs_embeds
|
1335 |
+
# decoder layers
|
1336 |
+
all_hidden_states = () if output_hidden_states else None
|
1337 |
+
all_self_attns = () if output_attentions else None
|
1338 |
+
all_router_logits = () if output_router_logits else None
|
1339 |
+
next_decoder_cache = () if use_cache else None
|
1340 |
+
|
1341 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1342 |
+
if output_hidden_states:
|
1343 |
+
all_hidden_states += (hidden_states,)
|
1344 |
+
|
1345 |
+
past_key_value = (past_key_values[idx] if past_key_values is not None else None)
|
1346 |
+
attn_mask = attention_mask
|
1347 |
+
slope_rate = slope_rates[idx]
|
1348 |
+
slope_rate = slope_rate * (1 - idx / (len(self.layers) - 1) + 1e-5)
|
1349 |
+
if self.gradient_checkpointing and self.training:
|
1350 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1351 |
+
decoder_layer.__call__,
|
1352 |
+
hidden_states,
|
1353 |
+
attention_mask,
|
1354 |
+
position_ids,
|
1355 |
+
past_key_values,
|
1356 |
+
output_attentions,
|
1357 |
+
output_router_logits,
|
1358 |
+
use_cache,
|
1359 |
+
)
|
1360 |
+
else:
|
1361 |
+
layer_outputs = decoder_layer(
|
1362 |
+
hidden_states,
|
1363 |
+
attention_mask=attn_mask,
|
1364 |
+
position_ids=position_ids,
|
1365 |
+
past_key_value=past_key_value,
|
1366 |
+
output_attentions=output_attentions,
|
1367 |
+
output_router_logits=output_router_logits,
|
1368 |
+
use_cache=use_cache,
|
1369 |
+
slope_rate=slope_rate
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
hidden_states = layer_outputs[0]
|
1373 |
+
|
1374 |
+
if use_cache:
|
1375 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1376 |
+
|
1377 |
+
if output_attentions:
|
1378 |
+
all_self_attns += (layer_outputs[1],)
|
1379 |
+
|
1380 |
+
if output_router_logits:
|
1381 |
+
all_router_logits += (layer_outputs[-1],)
|
1382 |
+
|
1383 |
+
hidden_states = self.norm(hidden_states)
|
1384 |
+
|
1385 |
+
# add hidden states from the last decoder layer
|
1386 |
+
if output_hidden_states:
|
1387 |
+
all_hidden_states += (hidden_states,)
|
1388 |
+
next_cache = next_decoder_cache if use_cache else None
|
1389 |
+
if not return_dict:
|
1390 |
+
return tuple(
|
1391 |
+
v
|
1392 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1393 |
+
if v is not None
|
1394 |
+
)
|
1395 |
+
return MoeModelOutputWithPast(
|
1396 |
+
last_hidden_state=hidden_states,
|
1397 |
+
past_key_values=next_cache,
|
1398 |
+
hidden_states=all_hidden_states,
|
1399 |
+
attentions=all_self_attns,
|
1400 |
+
router_logits=all_router_logits,
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
|
1404 |
+
class MiniMaxM1ForCausalLM(MiniMaxM1PreTrainedModel):
|
1405 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1406 |
+
|
1407 |
+
def __init__(self, config):
|
1408 |
+
super().__init__(config)
|
1409 |
+
self.model = MiniMaxM1Model(config)
|
1410 |
+
self.vocab_size = config.vocab_size
|
1411 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1412 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1413 |
+
self.num_experts = config.num_local_experts
|
1414 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1415 |
+
# Initialize weights and apply final processing
|
1416 |
+
self.post_init()
|
1417 |
+
|
1418 |
+
def get_input_embeddings(self):
|
1419 |
+
return self.model.embed_tokens
|
1420 |
+
|
1421 |
+
def set_input_embeddings(self, value):
|
1422 |
+
self.model.embed_tokens = value
|
1423 |
+
|
1424 |
+
def get_output_embeddings(self):
|
1425 |
+
return self.lm_head
|
1426 |
+
|
1427 |
+
def set_output_embeddings(self, new_embeddings):
|
1428 |
+
self.lm_head = new_embeddings
|
1429 |
+
|
1430 |
+
def set_decoder(self, decoder):
|
1431 |
+
self.model = decoder
|
1432 |
+
|
1433 |
+
def get_decoder(self):
|
1434 |
+
return self.model
|
1435 |
+
|
1436 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
1437 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1438 |
+
# Ignore copy
|
1439 |
+
def forward(
|
1440 |
+
self,
|
1441 |
+
input_ids: torch.LongTensor = None,
|
1442 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1443 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1444 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1445 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1446 |
+
labels: Optional[torch.LongTensor] = None,
|
1447 |
+
use_cache: Optional[bool] = None,
|
1448 |
+
output_attentions: Optional[bool] = None,
|
1449 |
+
output_hidden_states: Optional[bool] = None,
|
1450 |
+
output_router_logits: Optional[bool] = None,
|
1451 |
+
return_dict: Optional[bool] = None,
|
1452 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1453 |
+
r"""
|
1454 |
+
Args:
|
1455 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1456 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1457 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1458 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1459 |
+
|
1460 |
+
Returns:
|
1461 |
+
|
1462 |
+
Example:
|
1463 |
+
|
1464 |
+
```python
|
1465 |
+
>>> from transformers import AutoTokenizer, MiniMaxM1ForCausalLM
|
1466 |
+
|
1467 |
+
>>> model = MiniMaxM1ForCausalLM.from_pretrained(PATH_TO_WEIGHTS)
|
1468 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_WEIGHTS)
|
1469 |
+
|
1470 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1471 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1472 |
+
|
1473 |
+
>>> # Generate
|
1474 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1475 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1476 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1477 |
+
```"""
|
1478 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1479 |
+
output_router_logits = (
|
1480 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1481 |
+
)
|
1482 |
+
|
1483 |
+
output_hidden_states = (
|
1484 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1485 |
+
)
|
1486 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1487 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1488 |
+
outputs = self.model(
|
1489 |
+
input_ids=input_ids,
|
1490 |
+
attention_mask=attention_mask,
|
1491 |
+
position_ids=position_ids,
|
1492 |
+
past_key_values=past_key_values,
|
1493 |
+
inputs_embeds=inputs_embeds,
|
1494 |
+
use_cache=use_cache,
|
1495 |
+
output_attentions=output_attentions,
|
1496 |
+
output_hidden_states=output_hidden_states,
|
1497 |
+
output_router_logits=output_router_logits,
|
1498 |
+
return_dict=return_dict,
|
1499 |
+
)
|
1500 |
+
|
1501 |
+
hidden_states = outputs[0]
|
1502 |
+
logits = self.lm_head(hidden_states)
|
1503 |
+
logits = logits.float()
|
1504 |
+
|
1505 |
+
loss = None
|
1506 |
+
if labels is not None:
|
1507 |
+
# Shift so that tokens < n predict n
|
1508 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1509 |
+
shift_labels = labels[..., 1:].contiguous()
|
1510 |
+
# Flatten the tokens
|
1511 |
+
loss_fct = CrossEntropyLoss()
|
1512 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1513 |
+
shift_labels = shift_labels.view(-1)
|
1514 |
+
# Enable model parallelism
|
1515 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1516 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1517 |
+
|
1518 |
+
aux_loss = None
|
1519 |
+
if output_router_logits:
|
1520 |
+
aux_loss = load_balancing_loss_func(
|
1521 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1522 |
+
self.num_experts,
|
1523 |
+
self.num_experts_per_tok,
|
1524 |
+
attention_mask,
|
1525 |
+
)
|
1526 |
+
if labels is not None:
|
1527 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1528 |
+
|
1529 |
+
if not return_dict:
|
1530 |
+
output = (logits,) + outputs[1:]
|
1531 |
+
if output_router_logits:
|
1532 |
+
output = (aux_loss,) + output
|
1533 |
+
return (loss,) + output if loss is not None else output
|
1534 |
+
|
1535 |
+
torch.cuda.empty_cache()
|
1536 |
+
return MoeCausalLMOutputWithPast(
|
1537 |
+
loss=loss,
|
1538 |
+
aux_loss=aux_loss,
|
1539 |
+
logits=logits,
|
1540 |
+
past_key_values=outputs.past_key_values,
|
1541 |
+
hidden_states=outputs.hidden_states,
|
1542 |
+
attentions=outputs.attentions,
|
1543 |
+
router_logits=outputs.router_logits,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
def prepare_inputs_for_generation(
|
1547 |
+
self,
|
1548 |
+
input_ids,
|
1549 |
+
past_key_values=None,
|
1550 |
+
attention_mask=None,
|
1551 |
+
inputs_embeds=None,
|
1552 |
+
**kwargs,
|
1553 |
+
):
|
1554 |
+
if past_key_values:
|
1555 |
+
input_ids = input_ids[:, -1:]
|
1556 |
+
|
1557 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1558 |
+
if inputs_embeds is not None and past_key_values is None:
|
1559 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1560 |
+
else:
|
1561 |
+
model_inputs = {"input_ids": input_ids}
|
1562 |
+
|
1563 |
+
model_inputs.update({
|
1564 |
+
"past_key_values": past_key_values,
|
1565 |
+
"use_cache": kwargs.get("use_cache"),
|
1566 |
+
"attention_mask": attention_mask,
|
1567 |
+
})
|
1568 |
+
return model_inputs
|
1569 |
+
|
1570 |
+
@staticmethod
|
1571 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1572 |
+
reordered_past = ()
|
1573 |
+
for layer_past in past_key_values:
|
1574 |
+
reordered_past += (
|
1575 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1576 |
+
)
|
1577 |
+
return reordered_past
|
1578 |
+
|
1579 |
+
|
1580 |
+
@add_start_docstrings(
|
1581 |
+
"""
|
1582 |
+
The MiniMaxM1 Model transformer with a sequence classification head on top (linear layer).
|
1583 |
+
|
1584 |
+
[`MiniMaxM1ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1585 |
+
(e.g. GPT-2) do.
|
1586 |
+
|
1587 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1588 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1589 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1590 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1591 |
+
each row of the batch).
|
1592 |
+
""",
|
1593 |
+
MIXTRAL_START_DOCSTRING,
|
1594 |
+
)
|
1595 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->MiniMaxM1, LLAMA->MIXTRAL
|
1596 |
+
class MiniMaxM1ForSequenceClassification(MiniMaxM1PreTrainedModel):
|
1597 |
+
def __init__(self, config):
|
1598 |
+
super().__init__(config)
|
1599 |
+
self.num_labels = config.num_labels
|
1600 |
+
self.model = MiniMaxM1Model(config)
|
1601 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1602 |
+
|
1603 |
+
# Initialize weights and apply final processing
|
1604 |
+
self.post_init()
|
1605 |
+
|
1606 |
+
def get_input_embeddings(self):
|
1607 |
+
return self.model.embed_tokens
|
1608 |
+
|
1609 |
+
def set_input_embeddings(self, value):
|
1610 |
+
self.model.embed_tokens = value
|
1611 |
+
|
1612 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
1613 |
+
def forward(
|
1614 |
+
self,
|
1615 |
+
input_ids: torch.LongTensor = None,
|
1616 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1617 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1618 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1619 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1620 |
+
labels: Optional[torch.LongTensor] = None,
|
1621 |
+
use_cache: Optional[bool] = None,
|
1622 |
+
output_attentions: Optional[bool] = None,
|
1623 |
+
output_hidden_states: Optional[bool] = None,
|
1624 |
+
return_dict: Optional[bool] = None,
|
1625 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1626 |
+
r"""
|
1627 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1628 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1629 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1630 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1631 |
+
"""
|
1632 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1633 |
+
|
1634 |
+
transformer_outputs = self.model(
|
1635 |
+
input_ids,
|
1636 |
+
attention_mask=attention_mask,
|
1637 |
+
position_ids=position_ids,
|
1638 |
+
past_key_values=past_key_values,
|
1639 |
+
inputs_embeds=inputs_embeds,
|
1640 |
+
use_cache=use_cache,
|
1641 |
+
output_attentions=output_attentions,
|
1642 |
+
output_hidden_states=output_hidden_states,
|
1643 |
+
return_dict=return_dict,
|
1644 |
+
)
|
1645 |
+
hidden_states = transformer_outputs[0]
|
1646 |
+
logits = self.score(hidden_states)
|
1647 |
+
|
1648 |
+
if input_ids is not None:
|
1649 |
+
batch_size = input_ids.shape[0]
|
1650 |
+
else:
|
1651 |
+
batch_size = inputs_embeds.shape[0]
|
1652 |
+
|
1653 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1654 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1655 |
+
if self.config.pad_token_id is None:
|
1656 |
+
sequence_lengths = -1
|
1657 |
+
else:
|
1658 |
+
if input_ids is not None:
|
1659 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1660 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1661 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1662 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1663 |
+
else:
|
1664 |
+
sequence_lengths = -1
|
1665 |
+
|
1666 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1667 |
+
|
1668 |
+
loss = None
|
1669 |
+
if labels is not None:
|
1670 |
+
labels = labels.to(logits.device)
|
1671 |
+
if self.config.problem_type is None:
|
1672 |
+
if self.num_labels == 1:
|
1673 |
+
self.config.problem_type = "regression"
|
1674 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1675 |
+
self.config.problem_type = "single_label_classification"
|
1676 |
+
else:
|
1677 |
+
self.config.problem_type = "multi_label_classification"
|
1678 |
+
|
1679 |
+
if self.config.problem_type == "regression":
|
1680 |
+
loss_fct = MSELoss()
|
1681 |
+
if self.num_labels == 1:
|
1682 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1683 |
+
else:
|
1684 |
+
loss = loss_fct(pooled_logits, labels)
|
1685 |
+
elif self.config.problem_type == "single_label_classification":
|
1686 |
+
loss_fct = CrossEntropyLoss()
|
1687 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1688 |
+
elif self.config.problem_type == "multi_label_classification":
|
1689 |
+
loss_fct = BCEWithLogitsLoss()
|
1690 |
+
loss = loss_fct(pooled_logits, labels)
|
1691 |
+
if not return_dict:
|
1692 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1693 |
+
return ((loss,) + output) if loss is not None else output
|
1694 |
+
|
1695 |
+
return SequenceClassifierOutputWithPast(
|
1696 |
+
loss=loss,
|
1697 |
+
logits=pooled_logits,
|
1698 |
+
past_key_values=transformer_outputs.past_key_values,
|
1699 |
+
hidden_states=transformer_outputs.hidden_states,
|
1700 |
+
attentions=transformer_outputs.attentions,
|
1701 |
+
)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<beginning_of_sentence>",
|
4 |
+
"clean_up_tokenization_spaces": false,
|
5 |
+
"eos_token": "<end_of_sentence>",
|
6 |
+
"model_max_length": 40960000,
|
7 |
+
"tokenizer_class": "GPT2Tokenizer",
|
8 |
+
"unk_token": "<end_of_document>",
|
9 |
+
"chat_template": "{{ '<begin_of_document>' -}}{% set ns = namespace(system_prompt='') -%}{% for message in messages -%}{% if message['role'] == 'system' -%}{% set ns.system_prompt = ns.system_prompt + message['content'][0]['text'] -%}{% endif -%}{%- endfor -%}{% if ns.system_prompt != '' -%}{{ '<beginning_of_sentence>system ai_setting=assistant\n' + ns.system_prompt + '<end_of_sentence>\n' -}}{%- endif -%}{% if tools -%}{{ '<beginning_of_sentence>system tool_setting=tools\nYou are provided with these tools:\n<tools>\n' -}}{% for tool in tools -%}{{ tool | tojson ~ '\n' -}}{%- endfor -%}{{ '</tools>\n\nIf you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:\n<tool_calls>\n{''name'': <tool-name-1>, ''arguments'': <args-json-object-1>}\n...\n</tool_calls><end_of_sentence>\n' -}}{%- endif -%}{% for message in messages -%}{% if message['role'] == 'user' -%}{{ '<beginning_of_sentence>user name=user\n' + message['content'][0]['text'] + '<end_of_sentence>\n' -}}{% elif message['role'] == 'assistant' -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{% for content in message['content'] | selectattr('type', 'equalto', 'text') -%}{{ content['text'] -}}{%- endfor -%}{{ '<end_of_sentence>\n' -}}{% elif message['role'] == 'tool' -%}{{ '<beginning_of_sentence>tool name=tools\n' }} {%- for content in message['content'] -%}{{- 'tool name: ' + content['name'] + '\n' + 'tool result: ' + content['text'] + '\n\n' -}} {%- endfor -%}{{- '<end_of_sentence>\n' -}}{% endif -%}{%- endfor -%}{% if add_generation_prompt -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{%- endif -%}"
|
10 |
+
}
|
transformers_deployment_guide.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax Model Transformers Deployment Guide
|
2 |
+
|
3 |
+
[Transformers中文版部署指南](./transformers_deployment_guide_cn.md)
|
4 |
+
|
5 |
+
## 📖 Introduction
|
6 |
+
|
7 |
+
This guide will help you deploy the MiniMax-M1 model using the [Transformers](https://huggingface.co/docs/transformers/index) library. Transformers is a widely used deep learning library that provides a rich collection of pre-trained models and flexible model operation interfaces.
|
8 |
+
|
9 |
+
## 🛠️ Environment Setup
|
10 |
+
|
11 |
+
### Installing Transformers
|
12 |
+
|
13 |
+
```bash
|
14 |
+
pip install transformers torch accelerate
|
15 |
+
```
|
16 |
+
|
17 |
+
## 📋 Basic Usage Example
|
18 |
+
|
19 |
+
The pre-trained model can be used as follows:
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
23 |
+
|
24 |
+
MODEL_PATH = "{MODEL_PATH}"
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
27 |
+
|
28 |
+
messages = [
|
29 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
30 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
31 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
32 |
+
]
|
33 |
+
|
34 |
+
text = tokenizer.apply_chat_template(
|
35 |
+
messages,
|
36 |
+
tokenize=False,
|
37 |
+
add_generation_prompt=True
|
38 |
+
)
|
39 |
+
|
40 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
41 |
+
|
42 |
+
generation_config = GenerationConfig(
|
43 |
+
max_new_tokens=20,
|
44 |
+
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
use_cache=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
|
49 |
+
|
50 |
+
generated_ids = [
|
51 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
52 |
+
]
|
53 |
+
|
54 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
55 |
+
print(response)
|
56 |
+
```
|
57 |
+
|
58 |
+
## ⚡ Performance Optimization
|
59 |
+
|
60 |
+
### Speeding up with Flash Attention
|
61 |
+
|
62 |
+
The code snippet above showcases inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
|
63 |
+
|
64 |
+
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
pip install -U flash-attn --no-build-isolation
|
68 |
+
```
|
69 |
+
|
70 |
+
Also make sure that you have hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [Flash Attention repository](https://github.com/Dao-AILab/flash-attention). Additionally, ensure you load your model in half-precision (e.g. `torch.float16`).
|
71 |
+
|
72 |
+
To load and run a model using Flash Attention-2, refer to the snippet below:
|
73 |
+
|
74 |
+
```python
|
75 |
+
import torch
|
76 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
77 |
+
|
78 |
+
MODEL_PATH = "{MODEL_PATH}"
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
81 |
+
|
82 |
+
prompt = "My favourite condiment is"
|
83 |
+
|
84 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
85 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
86 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
87 |
+
print(response)
|
88 |
+
```
|
89 |
+
|
90 |
+
## 📮 Getting Support
|
91 |
+
|
92 |
+
If you encounter any issues while deploying the MiniMax-M1 model:
|
93 |
+
- Please check our official documentation
|
94 |
+
- Contact our technical support team through official channels
|
95 |
+
- Submit an Issue on our GitHub repository
|
96 |
+
|
97 |
+
We continuously optimize the deployment experience on Transformers and welcome your feedback!
|
transformers_deployment_guide_cn.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax 模型 Transformers 部署指南
|
2 |
+
|
3 |
+
## 📖 简介
|
4 |
+
|
5 |
+
本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。
|
6 |
+
|
7 |
+
## 🛠️ 环境准备
|
8 |
+
|
9 |
+
### 安装 Transformers
|
10 |
+
|
11 |
+
```bash
|
12 |
+
pip install transformers torch accelerate
|
13 |
+
```
|
14 |
+
|
15 |
+
## 📋 基本使用示例
|
16 |
+
|
17 |
+
预训练模型可以按照以下方式使用:
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
21 |
+
|
22 |
+
MODEL_PATH = "{MODEL_PATH}"
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
25 |
+
|
26 |
+
messages = [
|
27 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
28 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
29 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
30 |
+
]
|
31 |
+
|
32 |
+
text = tokenizer.apply_chat_template(
|
33 |
+
messages,
|
34 |
+
tokenize=False,
|
35 |
+
add_generation_prompt=True
|
36 |
+
)
|
37 |
+
|
38 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
39 |
+
|
40 |
+
generation_config = GenerationConfig(
|
41 |
+
max_new_tokens=20,
|
42 |
+
eos_token_id=tokenizer.eos_token_id,
|
43 |
+
use_cache=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
|
47 |
+
|
48 |
+
generated_ids = [
|
49 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
50 |
+
]
|
51 |
+
|
52 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
53 |
+
print(response)
|
54 |
+
```
|
55 |
+
|
56 |
+
## ⚡ 性能优化
|
57 |
+
|
58 |
+
### 使用 Flash Attention 加速
|
59 |
+
|
60 |
+
上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。
|
61 |
+
|
62 |
+
首先,确保安装最新版本的 Flash Attention 2 以包含滑动窗口注意力功能:
|
63 |
+
|
64 |
+
```bash
|
65 |
+
pip install -U flash-attn --no-build-isolation
|
66 |
+
```
|
67 |
+
|
68 |
+
还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。
|
69 |
+
|
70 |
+
要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段:
|
71 |
+
|
72 |
+
```python
|
73 |
+
import torch
|
74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
75 |
+
|
76 |
+
MODEL_PATH = "{MODEL_PATH}"
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
79 |
+
|
80 |
+
prompt = "My favourite condiment is"
|
81 |
+
|
82 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
83 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
84 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
85 |
+
print(response)
|
86 |
+
```
|
87 |
+
|
88 |
+
## 📮 获取支持
|
89 |
+
|
90 |
+
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
|
91 |
+
- 请查看我们的官方文档
|
92 |
+
- 通过官方渠道联系我们的技术支持团队
|
93 |
+
- 在我们的 GitHub 仓库提交 Issue
|
94 |
+
|
95 |
+
我们会持续优化 Transformers 上的部署体验,欢迎您的反馈!
|
vllm_deployment_guide.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax Models vLLM Deployment Guide
|
2 |
+
|
3 |
+
[vLLM中文版部署指南](./vllm_deployment_guide_cn.md)
|
4 |
+
|
5 |
+
## 📖 Introduction
|
6 |
+
|
7 |
+
We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to deploy [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k) model. Based on our testing, vLLM performs excellently when deploying this model, with the following features:
|
8 |
+
|
9 |
+
- 🔥 Outstanding service throughput performance
|
10 |
+
- ⚡ Efficient and intelligent memory management
|
11 |
+
- 📦 Powerful batch request processing capability
|
12 |
+
- ⚙️ Deeply optimized underlying performance
|
13 |
+
|
14 |
+
The MiniMax-M1 model can run efficiently on a single server equipped with 8 H800 or 8 H20 GPUs. In terms of hardware configuration, a server with 8 H800 GPUs can process context inputs up to 2 million tokens, while a server equipped with 8 H20 GPUs can support ultra-long context processing capabilities of up to 5 million tokens.
|
15 |
+
|
16 |
+
## 💾 Obtaining MiniMax Models
|
17 |
+
|
18 |
+
### MiniMax-M1 Model Obtaining
|
19 |
+
|
20 |
+
You can download the model from our official HuggingFace repository: [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k)
|
21 |
+
|
22 |
+
Download command:
|
23 |
+
```
|
24 |
+
pip install -U huggingface-hub
|
25 |
+
huggingface-cli download MiniMaxAI/MiniMax-M1
|
26 |
+
|
27 |
+
# If you encounter network issues, you can set a proxy
|
28 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
29 |
+
```
|
30 |
+
|
31 |
+
Or download using git:
|
32 |
+
|
33 |
+
```bash
|
34 |
+
git lfs install
|
35 |
+
git clone https://huggingface.co/MiniMaxAI/MiniMax-M1-40k
|
36 |
+
```
|
37 |
+
|
38 |
+
⚠️ **Important Note**: Please ensure that [Git LFS](https://git-lfs.github.com/) is installed on your system, which is necessary for completely downloading the model weight files.
|
39 |
+
|
40 |
+
## 🛠️ Deployment Options
|
41 |
+
|
42 |
+
### Option 1: Deploy Using Docker (Recommended)
|
43 |
+
|
44 |
+
To ensure consistency and stability of the deployment environment, we recommend using Docker for deployment.
|
45 |
+
|
46 |
+
⚠️ **Version Requirements**:
|
47 |
+
- MiniMax-M1 model requires vLLM version 0.8.3 or later for full support
|
48 |
+
- If you are using a Docker image with vLLM version lower than the required version, you will need to:
|
49 |
+
1. Update to the latest vLLM code
|
50 |
+
2. Recompile vLLM from source. Follow the compilation instructions in Solution 2 of the Common Issues section
|
51 |
+
|
52 |
+
1. Get the container image:
|
53 |
+
```bash
|
54 |
+
docker pull vllm/vllm-openai:v0.8.3
|
55 |
+
```
|
56 |
+
|
57 |
+
2. Run the container:
|
58 |
+
```bash
|
59 |
+
# Set environment variables
|
60 |
+
IMAGE=vllm/vllm-openai:v0.8.3
|
61 |
+
MODEL_DIR=<model storage path>
|
62 |
+
CODE_DIR=<code path>
|
63 |
+
NAME=MiniMaxImage
|
64 |
+
|
65 |
+
# Docker run configuration
|
66 |
+
DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
|
67 |
+
|
68 |
+
# Start the container
|
69 |
+
sudo docker run -it \
|
70 |
+
-v $MODEL_DIR:$MODEL_DIR \
|
71 |
+
-v $CODE_DIR:$CODE_DIR \
|
72 |
+
--name $NAME \
|
73 |
+
$DOCKER_RUN_CMD \
|
74 |
+
$IMAGE /bin/bash
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
### Option 2: Direct Installation of vLLM
|
79 |
+
|
80 |
+
If your environment meets the following requirements:
|
81 |
+
|
82 |
+
- CUDA 12.1
|
83 |
+
- PyTorch 2.1
|
84 |
+
|
85 |
+
You can directly install vLLM
|
86 |
+
|
87 |
+
Installation command:
|
88 |
+
```bash
|
89 |
+
pip install vllm
|
90 |
+
```
|
91 |
+
|
92 |
+
💡 If you are using other environment configurations, please refer to the [vLLM Installation Guide](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
93 |
+
|
94 |
+
## 🚀 Starting the Service
|
95 |
+
|
96 |
+
### Launch MiniMax-M1 Service
|
97 |
+
|
98 |
+
```bash
|
99 |
+
export SAFETENSORS_FAST_GPU=1
|
100 |
+
export VLLM_USE_V1=0
|
101 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
102 |
+
--model <model storage path> \
|
103 |
+
--tensor-parallel-size 8 \
|
104 |
+
--trust-remote-code \
|
105 |
+
--quantization experts_int8 \
|
106 |
+
--max_model_len 4096 \
|
107 |
+
--dtype bfloat16
|
108 |
+
```
|
109 |
+
|
110 |
+
### API Call Example
|
111 |
+
|
112 |
+
```bash
|
113 |
+
curl http://localhost:8000/v1/chat/completions \
|
114 |
+
-H "Content-Type: application/json" \
|
115 |
+
-d '{
|
116 |
+
"model": "MiniMaxAI/MiniMax-M1",
|
117 |
+
"messages": [
|
118 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
119 |
+
{"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
|
120 |
+
]
|
121 |
+
}'
|
122 |
+
```
|
123 |
+
|
124 |
+
## ❗ Common Issues
|
125 |
+
|
126 |
+
### Module Loading Problems
|
127 |
+
If you encounter the following error:
|
128 |
+
```
|
129 |
+
import vllm._C # noqa
|
130 |
+
ModuleNotFoundError: No module named 'vllm._C'
|
131 |
+
```
|
132 |
+
|
133 |
+
Or
|
134 |
+
|
135 |
+
```
|
136 |
+
MiniMax-M1 model is not currently supported
|
137 |
+
```
|
138 |
+
|
139 |
+
We provide two solutions:
|
140 |
+
|
141 |
+
#### Solution 1: Copy Dependency Files
|
142 |
+
```bash
|
143 |
+
cd <working directory>
|
144 |
+
git clone https://github.com/vllm-project/vllm.git
|
145 |
+
cd vllm
|
146 |
+
cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
|
147 |
+
cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
|
148 |
+
```
|
149 |
+
|
150 |
+
#### Solution 2: Install from Source
|
151 |
+
```bash
|
152 |
+
cd <working directory>
|
153 |
+
git clone https://github.com/vllm-project/vllm.git
|
154 |
+
|
155 |
+
cd vllm/
|
156 |
+
pip install -e .
|
157 |
+
```
|
158 |
+
|
159 |
+
## 📮 Getting Support
|
160 |
+
|
161 |
+
If you encounter any issues while deploying MiniMax-M1 model:
|
162 |
+
- Please check our official documentation
|
163 |
+
- Contact our technical support team through official channels
|
164 |
+
- Submit an [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues) on our GitHub repository
|
165 |
+
|
166 |
+
We will continuously optimize the deployment experience of this model and welcome your feedback!
|
vllm_deployment_guide_cn.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 MiniMax 模型 vLLM 部署指南
|
2 |
+
|
3 |
+
## 📖 简介
|
4 |
+
|
5 |
+
我们推荐使用 [vLLM](https://docs.vllm.ai/en/latest/) 来部署 [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k) 模型。经过我们的测试,vLLM 在部署这个模型时表现出色,具有以下特点:
|
6 |
+
|
7 |
+
- 🔥 卓越的服务吞吐量性能
|
8 |
+
- ⚡ 高效智能的内存管理机制
|
9 |
+
- 📦 强大的批量请求处理能力
|
10 |
+
- ⚙️ 深度优化的底层性能
|
11 |
+
|
12 |
+
MiniMax-M1 模型可在单台配备8个H800或8个H20 GPU的服务器上高效运行。在硬件配置方面,搭载8个H800 GPU的服务器可处理长达200万token的上下文输入,而配备8个H20 GPU的服务器则能够支持高达500万token的超长上下文处理能力。
|
13 |
+
|
14 |
+
## 💾 获取 MiniMax 模型
|
15 |
+
|
16 |
+
### MiniMax-M1 模型获取
|
17 |
+
|
18 |
+
您可以从我们的官方 HuggingFace 仓库下载模型:[MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k)
|
19 |
+
|
20 |
+
下载命令:
|
21 |
+
```
|
22 |
+
pip install -U huggingface-hub
|
23 |
+
huggingface-cli download MiniMaxAI/MiniMax-M1
|
24 |
+
|
25 |
+
# 如果遇到网络问题,可以设置代理
|
26 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
27 |
+
```
|
28 |
+
|
29 |
+
或者使用 git 下载:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
git lfs install
|
33 |
+
git clone https://huggingface.co/MiniMaxAI/MiniMax-M1-40k
|
34 |
+
```
|
35 |
+
|
36 |
+
⚠️ **重要提示**:请确保系统已安装 [Git LFS](https://git-lfs.github.com/),这对于完整下载模型权重文件是必需的。
|
37 |
+
|
38 |
+
## 🛠️ 部署方案
|
39 |
+
|
40 |
+
### 方案一:使用 Docker 部署(推荐)
|
41 |
+
|
42 |
+
为确保部署环境的一致性和稳定性,我们推荐使用 Docker 进行部署。
|
43 |
+
|
44 |
+
⚠️ **版本要求**:
|
45 |
+
- MiniMax-M1 模型需要 vLLM 0.8.3 或更高版本才能获得完整支持
|
46 |
+
|
47 |
+
1. 获取容器镜像:
|
48 |
+
```bash
|
49 |
+
docker pull vllm/vllm-openai:v0.8.3
|
50 |
+
```
|
51 |
+
|
52 |
+
2. 运行容器:
|
53 |
+
```bash
|
54 |
+
# 设置环境变量
|
55 |
+
IMAGE=vllm/vllm-openai:v0.8.3
|
56 |
+
MODEL_DIR=<模型存放路径>
|
57 |
+
CODE_DIR=<代码路径>
|
58 |
+
NAME=MiniMaxImage
|
59 |
+
|
60 |
+
# Docker运行配置
|
61 |
+
DOCKER_RUN_CMD="--network=host --privileged --ipc=host --ulimit memlock=-1 --shm-size=2gb --rm --gpus all --ulimit stack=67108864"
|
62 |
+
|
63 |
+
# 启动容器
|
64 |
+
sudo docker run -it \
|
65 |
+
-v $MODEL_DIR:$MODEL_DIR \
|
66 |
+
-v $CODE_DIR:$CODE_DIR \
|
67 |
+
--name $NAME \
|
68 |
+
$DOCKER_RUN_CMD \
|
69 |
+
$IMAGE /bin/bash
|
70 |
+
```
|
71 |
+
|
72 |
+
|
73 |
+
### 方案二:直接安装 vLLM
|
74 |
+
|
75 |
+
如果您的环境满足以下要求:
|
76 |
+
|
77 |
+
- CUDA 12.1
|
78 |
+
- PyTorch 2.1
|
79 |
+
|
80 |
+
可以直接安装 vLLM
|
81 |
+
|
82 |
+
安装命令:
|
83 |
+
```bash
|
84 |
+
pip install vllm
|
85 |
+
```
|
86 |
+
|
87 |
+
💡 如果您使用其他环境配置,请参考 [vLLM 安装指南](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
88 |
+
|
89 |
+
## 🚀 启动服务
|
90 |
+
|
91 |
+
### 启动 MiniMax-M1 服务
|
92 |
+
|
93 |
+
```bash
|
94 |
+
export SAFETENSORS_FAST_GPU=1
|
95 |
+
export VLLM_USE_V1=0
|
96 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
97 |
+
--model <模型存放路径> \
|
98 |
+
--tensor-parallel-size 8 \
|
99 |
+
--trust-remote-code \
|
100 |
+
--quantization experts_int8 \
|
101 |
+
--max_model_len 4096 \
|
102 |
+
--dtype bfloat16
|
103 |
+
```
|
104 |
+
|
105 |
+
### API 调用示例
|
106 |
+
|
107 |
+
```bash
|
108 |
+
curl http://localhost:8000/v1/chat/completions \
|
109 |
+
-H "Content-Type: application/json" \
|
110 |
+
-d '{
|
111 |
+
"model": "MiniMaxAI/MiniMax-M1",
|
112 |
+
"messages": [
|
113 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
114 |
+
{"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]}
|
115 |
+
]
|
116 |
+
}'
|
117 |
+
```
|
118 |
+
|
119 |
+
## ❗ 常见问题
|
120 |
+
|
121 |
+
### 模块加载问题
|
122 |
+
如果遇到以下错误:
|
123 |
+
```
|
124 |
+
import vllm._C # noqa
|
125 |
+
ModuleNotFoundError: No module named 'vllm._C'
|
126 |
+
```
|
127 |
+
|
128 |
+
或
|
129 |
+
|
130 |
+
```
|
131 |
+
当前并不支持 MiniMax-M1 模型
|
132 |
+
```
|
133 |
+
|
134 |
+
我们提供两种解决方案:
|
135 |
+
|
136 |
+
#### 解决方案一:复制依赖文件
|
137 |
+
```bash
|
138 |
+
cd <工作目录>
|
139 |
+
git clone https://github.com/vllm-project/vllm.git
|
140 |
+
cd vllm
|
141 |
+
cp /usr/local/lib/python3.12/dist-packages/vllm/*.so vllm
|
142 |
+
cp -r /usr/local/lib/python3.12/dist-packages/vllm/vllm_flash_attn/* vllm/vllm_flash_attn
|
143 |
+
```
|
144 |
+
|
145 |
+
#### 解决方案二:从源码安装
|
146 |
+
```bash
|
147 |
+
cd <工作目录>
|
148 |
+
git clone https://github.com/vllm-project/vllm.git
|
149 |
+
|
150 |
+
cd vllm/
|
151 |
+
pip install -e .
|
152 |
+
```
|
153 |
+
|
154 |
+
## 📮 获取支持
|
155 |
+
|
156 |
+
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
|
157 |
+
- 请查看我们的官方文档
|
158 |
+
- 通过官方渠道联系我们的技术支持团队
|
159 |
+
- 在我们的 GitHub 仓库提交 [Issue](https://github.com/MiniMax-AI/MiniMax-M1/issues)
|
160 |
+
|
161 |
+
我们会持续优化模型的部署体验,欢迎您的反馈!
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|