# 🚀 MiniMax 模型 Transformers 部署指南 ## 📖 简介 本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。 ## 🛠️ 环境准备 ### 安装 Transformers ```bash pip install transformers torch accelerate ``` ## 📋 基本使用示例 预训练模型可以按照以下方式使用: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig MODEL_PATH = "{MODEL_PATH}" model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) messages = [ {"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]}, {"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]}, {"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer(text, return_tensors="pt").to(model.device) generation_config = GenerationConfig( max_new_tokens=20, eos_token_id=tokenizer.eos_token_id, use_cache=True, ) generated_ids = model.generate(**model_inputs, generation_config=generation_config) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## ⚡ 性能优化 ### 使用 Flash Attention 加速 上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。 首先,确保安装最新版本的 Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` 还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。 要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_PATH = "{MODEL_PATH}" model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) prompt = "My favourite condiment is" model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) response = tokenizer.batch_decode(generated_ids)[0] print(response) ``` ## 📮 获取支持 如果您在部署 MiniMax-M1 模型过程中遇到任何问题: - 请查看我们的官方文档 - 通过官方渠道联系我们的技术支持团队 - 在我们的 GitHub 仓库提交 Issue 我们会持续优化 Transformers 上的部署体验,欢迎您的反馈!