File size: 87,003 Bytes
cfde609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
#cp ../data/minimax-dialogue/experiment/pretrain/vlm_test/stage2_abab7s_projenfc/newstage2_1_0_3000/iter_0002000/converted_hf_mixed_precision/modeling_clip.py /root/.cache/huggingface/modules/transformers_modules/converted_hf_mixed_precision/modeling_clip.py

# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch CLIP model."""

from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union, List

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2
from transformers.utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
#from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
#from .image_utils import get_hw_multiple_of

if is_flash_attn_2_available():
    from flash_attn import flash_attn_varlen_func

    #from ...modeling_flash_attention_utils import _flash_attention_forward
else:
    flash_attn_varlen_func = None
logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "CLIPConfig"
_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "openai/clip-vit-base-patch32"
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0"

import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union


if TYPE_CHECKING:
    from transformers.processing_utils import ProcessorMixin
    from transformers.utils import TensorType

from transformers.configuration_utils import PretrainedConfig

def get_hw_multiple_of(image_size, multiple, max_size=None):
    w, h = image_size
    new_w = w if w % multiple == 0 else w + (multiple - w % multiple)
    new_h = h if h % multiple == 0 else h + (multiple - h % multiple)
    if max_size is not None:
        assert isinstance(max_size, (list, tuple)) and len(max_size) == 2
        max_w, max_h = max_size
        assert max_w % multiple == 0 and max_h % multiple == 0
        if new_w > max_w or new_h > max_h:
            # ratio = min(max_w / new_w, max_h / new_h)
            # new_w = int(new_w * ratio)
            # new_h = int(new_h * ratio)
            new_w = min((new_w * max_w) // new_w, (new_w * max_h) // new_h)
            new_h = min((new_h * max_w) // new_w, (new_h * max_h) // new_h)

            new_w = new_w if new_w % multiple == 0 else new_w + (multiple - new_w % multiple)
            new_h = new_h if new_h % multiple == 0 else new_h + (multiple - new_h % multiple)
        assert new_w % multiple == 0 and new_h % multiple == 0
        assert new_w <= max_w and new_h <= max_h
    return new_w, new_h

class CLIPVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
    CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
    [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import CLIPVisionConfig, CLIPVisionModel

    >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
    >>> configuration = CLIPVisionConfig()

    >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
    >>> model = CLIPVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "clip_vision_model"

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        projection_dim=512,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=32,
        hidden_act="quick_gelu",
        layer_norm_eps=1e-5,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        position_embedding_type='learned_absolute',
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.position_embedding_type = position_embedding_type

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the vision config dict if we are loading from CLIPConfig
        if config_dict.get("model_type") == "clip":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/2021-03-07-clip.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
    return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))


def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
    caption_loss = contrastive_loss(similarity)
    image_loss = contrastive_loss(similarity.t())
    return (caption_loss + image_loss) / 2.0


def _get_vector_norm(tensor: torch.Tensor) -> torch.Tensor:
    """
    This method is equivalent to tensor.norm(p=2, dim=-1, keepdim=True) and used to make
    model `executorch` exportable. See issue https://github.com/pytorch/executorch/issues/3566
    """
    square_tensor = torch.pow(tensor, 2)
    sum_tensor = torch.sum(square_tensor, dim=-1, keepdim=True)
    normed_tensor = torch.pow(sum_tensor, 0.5)
    return normed_tensor


@dataclass
class CLIPVisionModelOutput(ModelOutput):
    """
    Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.

    Args:
        image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    image_embeds: Optional[torch.FloatTensor] = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class CLIPTextModelOutput(ModelOutput):
    """
    Base class for text model's outputs that also contains a pooling of the last hidden states.

    Args:
        text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The text embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    text_embeds: Optional[torch.FloatTensor] = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class CLIPOutput(ModelOutput):
    """
    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
            Contrastive loss for image-text similarity.
        logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
            The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
            similarity scores.
        logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
            The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
            similarity scores.
        text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
            The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
        image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
            The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
        text_model_output (`BaseModelOutputWithPooling`):
            The output of the [`CLIPTextModel`].
        vision_model_output (`BaseModelOutputWithPooling`):
            The output of the [`CLIPVisionModel`].
    """

    loss: Optional[torch.FloatTensor] = None
    logits_per_image: torch.FloatTensor = None
    logits_per_text: torch.FloatTensor = None
    text_embeds: torch.FloatTensor = None
    image_embeds: torch.FloatTensor = None
    text_model_output: BaseModelOutputWithPooling = None
    vision_model_output: BaseModelOutputWithPooling = None

    def to_tuple(self) -> Tuple[Any]:
        return tuple(
            self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
            for k in self.keys()
        )


class CLIPVisionEmbeddings(nn.Module):
    def __init__(self, config: CLIPVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1
        if self.config.position_embedding_type == "learned_absolute":
            self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
            self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        batch_size = pixel_values.shape[0]
        target_dtype = self.patch_embedding.weight.dtype
        if self.patch_embedding.weight.dtype != pixel_values.dtype:
            self.patch_embedding = self.patch_embedding.to(pixel_values.dtype)
            #self.patch_embedding.weight.copy_(self.patch_embedding.weight.to(pixel_values.dtype))
            print("DEBUG: weight dtype for patch embedding", self.patch_embedding.weight.dtype)
        #patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))  # shape = [*, width, grid, grid]
        patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, width, grid, grid]
        #patch_embeds = patch_embeds.flatten(2).transpose(1, 2).to(dtype=torch.bfloat16)
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2).to(dtype=self.class_embedding.dtype)
        if self.config.position_embedding_type == "learned_absolute":
            class_embeds = self.class_embedding.expand(batch_size, 1, -1)
            embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
            embeddings = embeddings + self.position_embedding(self.position_ids)
        else:
            embeddings = patch_embeds
        return embeddings


# class CLIPTextEmbeddings(nn.Module):
#     def __init__(self, config: CLIPTextConfig):
#         super().__init__()
#         embed_dim = config.hidden_size

#         self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
#         self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)

#         # position_ids (1, len position emb) is contiguous in memory and exported when serialized
#         self.register_buffer(
#             "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
#         )

#     def forward(
#         self,
#         input_ids: Optional[torch.LongTensor] = None,
#         position_ids: Optional[torch.LongTensor] = None,
#         inputs_embeds: Optional[torch.FloatTensor] = None,
#     ) -> torch.Tensor:
#         seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]

#         if position_ids is None:
#             position_ids = self.position_ids[:, :seq_length]

#         if inputs_embeds is None:
#             inputs_embeds = self.token_embedding(input_ids)

#         position_embeddings = self.position_embedding(position_ids)
#         embeddings = inputs_embeds + position_embeddings

#         return embeddings

# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    orig_dtype = tensor.dtype
    tensor = tensor.float()
    cos = freqs.cos()
    sin = freqs.sin()
    cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    output = (tensor * cos) + (rotate_half(tensor) * sin)
    output = output.to(orig_dtype)
    return output


class VisionRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs

class VisionFlashAttention2(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        # self.num_heads = num_heads
        # self.qkv = nn.Linear(dim, dim * 3, bias=True)
        # self.proj = nn.Linear(dim, dim)
        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self, hidden_states: torch.Tensor, cu_seq_len: torch.Tensor, max_seqlen=None, rotary_pos_emb: torch.Tensor = None,
        **kwargs
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q = self.q_proj(hidden_states).view(seq_length, self.num_heads, self.head_dim)
        k = self.k_proj(hidden_states).view(seq_length, self.num_heads, self.head_dim)
        v = self.v_proj(hidden_states).view(seq_length, self.num_heads, self.head_dim)

        #q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        if self.config.position_embedding_type == "rope":
            q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
            k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attn_output = flash_attn_varlen_func(q, k, v, cu_seq_len, cu_seq_len, max_seqlen, max_seqlen).reshape(
            seq_length, -1
        )
        
        attn_output = self.out_proj(attn_output).unsqueeze(1)
        return attn_output, None



# class CLIPAttention(nn.Module):
#     """Multi-headed attention from 'Attention Is All You Need' paper"""

#     def __init__(self, config):
#         super().__init__()
#         self.config = config
#         self.embed_dim = config.hidden_size
#         self.num_heads = config.num_attention_heads
#         self.head_dim = self.embed_dim // self.num_heads
#         if self.head_dim * self.num_heads != self.embed_dim:
#             raise ValueError(
#                 f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
#                 f" {self.num_heads})."
#             )
#         self.scale = self.head_dim**-0.5
#         self.dropout = config.attention_dropout

#         self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
#         self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
#         self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
#         self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

#     def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
#         return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

#     def forward(
#         self,
#         hidden_states: torch.Tensor,
#         attention_mask: Optional[torch.Tensor] = None,
#         causal_attention_mask: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = False,
#     ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
#         """Input shape: Batch x Time x Channel"""

#         bsz, tgt_len, embed_dim = hidden_states.size()

#         # get query proj
#         query_states = self.q_proj(hidden_states) * self.scale
#         key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
#         value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

#         proj_shape = (bsz * self.num_heads, -1, self.head_dim)
#         query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
#         key_states = key_states.view(*proj_shape)
#         value_states = value_states.view(*proj_shape)

#         src_len = key_states.size(1)
#         attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

#         if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
#             raise ValueError(
#                 f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
#                 f" {attn_weights.size()}"
#             )

#         # apply the causal_attention_mask first
#         if causal_attention_mask is not None:
#             if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
#                 raise ValueError(
#                     f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
#                     f" {causal_attention_mask.size()}"
#                 )
#             attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
#             attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

#         if attention_mask is not None:
#             if attention_mask.size() != (bsz, 1, tgt_len, src_len):
#                 raise ValueError(
#                     f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
#                 )
#             attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
#             attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

#         attn_weights = nn.functional.softmax(attn_weights, dim=-1)

#         if output_attentions:
#             # this operation is a bit akward, but it's required to
#             # make sure that attn_weights keeps its gradient.
#             # In order to do so, attn_weights have to reshaped
#             # twice and have to be reused in the following
#             attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
#             attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
#         else:
#             attn_weights_reshaped = None

#         attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

#         attn_output = torch.bmm(attn_probs, value_states)

#         if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
#             raise ValueError(
#                 f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
#                 f" {attn_output.size()}"
#             )

#         attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
#         attn_output = attn_output.transpose(1, 2)
#         attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

#         attn_output = self.out_proj(attn_output)

#         return attn_output, attn_weights_reshaped


# class CLIPFlashAttention2(CLIPAttention):
#     """
#     CLIPAttention flash attention module. This module inherits from `CLIPAttention` as the weights of the module stays
#     untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
#     flash attention and deal with padding tokens in case the input contains any of them.
#     """

#     # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
#     def __init__(self, *args, **kwargs):
#         super().__init__(*args, **kwargs)

#         # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
#         # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
#         # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
#         self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

#     # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
#     def forward(
#         self,
#         hidden_states: torch.Tensor,
#         attention_mask: Optional[torch.Tensor] = None,
#         causal_attention_mask: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = False,
#     ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
#         output_attentions = False

#         batch_size, q_len, _ = hidden_states.size()

#         query_states = self.q_proj(hidden_states)
#         key_states = self.k_proj(hidden_states)
#         value_states = self.v_proj(hidden_states)

#         # Flash attention requires the input to have the shape
#         # batch_size x seq_length x head_dim x hidden_dim
#         # therefore we just need to keep the original shape
#         query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim)
#         key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim)
#         value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim)

#         dropout_rate = self.dropout if self.training else 0.0

#         # In PEFT, usually we cast the layer norms in float32 for training stability reasons
#         # therefore the input hidden states gets silently casted in float32. Hence, we need
#         # cast them back in the correct dtype just to be sure everything works as expected.
#         # This might slowdown training & inference so it is recommended to not cast the LayerNorms
#         # in fp32.

#         input_dtype = query_states.dtype
#         if input_dtype == torch.float32:
#             if torch.is_autocast_enabled():
#                 target_dtype = torch.get_autocast_gpu_dtype()
#             # Handle the case where the model is quantized
#             elif hasattr(self.config, "_pre_quantization_dtype"):
#                 target_dtype = self.config._pre_quantization_dtype
#             else:
#                 target_dtype = self.q_proj.weight.dtype

#             logger.warning_once(
#                 f"The input hidden states seems to be silently casted in float32, this might be related to"
#                 f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
#                 f" {target_dtype}."
#             )

#             query_states = query_states.to(target_dtype)
#             key_states = key_states.to(target_dtype)
#             value_states = value_states.to(target_dtype)

#         attn_output = _flash_attention_forward(
#             query_states,
#             key_states,
#             value_states,
#             attention_mask,
#             q_len,
#             dropout=dropout_rate,
#             is_causal=causal_attention_mask is not None,
#             use_top_left_mask=self._flash_attn_uses_top_left_mask,
#         )

#         attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
#         attn_output = self.out_proj(attn_output)

#         if not output_attentions:
#             attn_weights = None

#         return attn_output, attn_weights


# class CLIPSdpaAttention(CLIPAttention):
#     """
#     SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
#     `CLIPAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
#     SDPA API.
#     """

#     # Adapted from CLIPAttention.forward
#     def forward(
#         self,
#         hidden_states: torch.Tensor,
#         attention_mask: Optional[torch.Tensor] = None,
#         causal_attention_mask: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = False,
#     ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
#         if output_attentions:
#             # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
#             logger.warning_once(
#                 "CLIPModel is using CLIPSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not "
#                 "support `output_attentions=True`. Falling back to the manual attention implementation, but specifying "
#                 "the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can "
#                 'be removed using the argument `attn_implementation="eager"` when loading the model.'
#             )
#             return super().forward(
#                 hidden_states=hidden_states,
#                 attention_mask=attention_mask,
#                 causal_attention_mask=causal_attention_mask,
#                 output_attentions=output_attentions,
#             )

#         # CLIP text model uses both `causal_attention_mask` and `attention_mask`
#         if attention_mask is not None and causal_attention_mask is not None:
#             attn_mask = attention_mask + causal_attention_mask
#         elif causal_attention_mask is not None:
#             attn_mask = causal_attention_mask
#         else:
#             attn_mask = attention_mask

#         bsz, tgt_len, embed_dim = hidden_states.size()

#         query_states = self.q_proj(hidden_states)
#         key_states = self.k_proj(hidden_states)
#         value_states = self.v_proj(hidden_states)

#         query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
#         key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
#         value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)

#         # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
#         # Reference: https://github.com/pytorch/pytorch/issues/112577.
#         if not is_torch_greater_or_equal_than_2_2 and query_states.device.type == "cuda" and attn_mask is not None:
#             query_states = query_states.contiguous()
#             key_states = key_states.contiguous()
#             value_states = value_states.contiguous()

#         # CLIP text model uses both `causal_attention_mask` and `attention_mask` sequentially.
#         attn_output = torch.nn.functional.scaled_dot_product_attention(
#             query_states,
#             key_states,
#             value_states,
#             attn_mask=attn_mask,
#             dropout_p=self.dropout if self.training else 0.0,
#             scale=self.scale,
#         )

#         attn_output = attn_output.transpose(1, 2)
#         attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

#         attn_output = self.out_proj(attn_output)

#         return attn_output, None


# CLIP_ATTENTION_CLASSES = {
#     "eager": CLIPAttention,
#     "sdpa": CLIPSdpaAttention,
#     "flash_attention_2": CLIPFlashAttention2,
# }


class CLIPMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        device = hidden_states.device
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class CLIPEncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_dim = config.hidden_size
        #self.self_attn = CLIP_ATTENTION_CLASSES[config._attn_implementation](config)
        self.self_attn = VisionFlashAttention2(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = CLIPMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        causal_attention_mask: torch.Tensor,
        cu_seq_len=None,
        max_seqlen=None,
        rotary_pos_emb=None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            cu_seq_len=cu_seq_len,
            max_seqlen=max_seqlen,
            rotary_pos_emb=rotary_pos_emb,
            output_attentions=output_attentions,
        )
        device = hidden_states.device
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class CLIPPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CLIPVisionConfig
    base_model_prefix = "clip"
    supports_gradient_checkpointing = True
    _supports_sdpa = True
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        """Initialize the weights"""
        factor = self.config.initializer_factor
        # if isinstance(module, CLIPTextEmbeddings):
        #     module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
        #     module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
        if isinstance(module, CLIPVisionEmbeddings):
            factor = self.config.initializer_factor
            nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
            nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
            #nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
        # elif isinstance(module, CLIPAttention):
        #     factor = self.config.initializer_factor
        #     in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
        #     out_proj_std = (module.embed_dim**-0.5) * factor
        #     nn.init.normal_(module.q_proj.weight, std=in_proj_std)
        #     nn.init.normal_(module.k_proj.weight, std=in_proj_std)
        #     nn.init.normal_(module.v_proj.weight, std=in_proj_std)
        #     nn.init.normal_(module.out_proj.weight, std=out_proj_std)
        elif isinstance(module, CLIPMLP):
            factor = self.config.initializer_factor
            in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
            fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
            nn.init.normal_(module.fc1.weight, std=fc_std)
            nn.init.normal_(module.fc2.weight, std=in_proj_std)
        # elif isinstance(module, CLIPModel):
        #     nn.init.normal_(
        #         module.text_projection.weight,
        #         std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
        #     )
        #     nn.init.normal_(
        #         module.visual_projection.weight,
        #         std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
        #     )
        # elif isinstance(module, CLIPVisionModelWithProjection):
        #     nn.init.normal_(
        #         module.visual_projection.weight,
        #         std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
        #     )
        # elif isinstance(module, CLIPTextModelWithProjection):
        #     nn.init.normal_(
        #         module.text_projection.weight,
        #         std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
        #     )
        # elif isinstance(module, CLIPForImageClassification):
        #     nn.init.normal_(
        #         module.classifier.weight,
        #         std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor,
        #     )

        if isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


CLIP_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CLIP_TEXT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

CLIP_VISION_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

CLIP_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
        return_loss (`bool`, *optional*):
            Whether or not to return the contrastive loss.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class CLIPEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`CLIPEncoderLayer`].

    Args:
        config: CLIPConfig
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        cu_seq_len: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        rotary_pos_emb: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Causal mask for the text model. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    causal_attention_mask,
                    cu_seq_len,
                    max_seqlen,
                    rotary_pos_emb,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    causal_attention_mask,
                    cu_seq_len,
                    max_seqlen,
                    rotary_pos_emb,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states.permute(1,0,2),)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states.permute(1,0,2), hidden_states=encoder_states, attentions=all_attentions
        )


# class CLIPTextTransformer(nn.Module):
#     def __init__(self, config: CLIPTextConfig):
#         super().__init__()
#         self.config = config
#         embed_dim = config.hidden_size
#         self.embeddings = CLIPTextEmbeddings(config)
#         self.encoder = CLIPEncoder(config)
#         self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

#         # For `pooled_output` computation
#         self.eos_token_id = config.eos_token_id

#         # For attention mask, it differs between `flash_attention_2` and other attention implementations
#         self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"

#     @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
#     @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
#     def forward(
#         self,
#         input_ids: Optional[torch.Tensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> Union[Tuple, BaseModelOutputWithPooling]:
#         r"""
#         Returns:

#         """
#         output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
#         output_hidden_states = (
#             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
#         )
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         if input_ids is None:
#             raise ValueError("You have to specify input_ids")

#         input_shape = input_ids.size()
#         input_ids = input_ids.view(-1, input_shape[-1])

#         hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)

#         # CLIP's text model uses causal mask, prepare it here.
#         # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
#         causal_attention_mask = _create_4d_causal_attention_mask(
#             input_shape, hidden_states.dtype, device=hidden_states.device
#         )

#         # expand attention_mask
#         if attention_mask is not None and not self._use_flash_attention_2:
#             # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
#             attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)

#         encoder_outputs = self.encoder(
#             inputs_embeds=hidden_states,
#             attention_mask=attention_mask,
#             causal_attention_mask=causal_attention_mask,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         last_hidden_state = encoder_outputs[0]
#         last_hidden_state = self.final_layer_norm(last_hidden_state)

#         if self.eos_token_id == 2:
#             # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
#             # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
#             # ------------------------------------------------------------
#             # text_embeds.shape = [batch_size, sequence_length, transformer.width]
#             # take features from the eot embedding (eot_token is the highest number in each sequence)
#             # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
#             pooled_output = last_hidden_state[
#                 torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
#                 input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
#             ]
#         else:
#             # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
#             pooled_output = last_hidden_state[
#                 torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
#                 # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
#                 # Note: we assume each sequence (along batch dim.) contains an  `eos_token_id` (e.g. prepared by the tokenizer)
#                 (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
#                 .int()
#                 .argmax(dim=-1),
#             ]

#         if not return_dict:
#             return (last_hidden_state, pooled_output) + encoder_outputs[1:]

#         return BaseModelOutputWithPooling(
#             last_hidden_state=last_hidden_state,
#             pooler_output=pooled_output,
#             hidden_states=encoder_outputs.hidden_states,
#             attentions=encoder_outputs.attentions,
#         )


# @add_start_docstrings(
#     """The text model from CLIP without any head or projection on top.""",
#     CLIP_START_DOCSTRING,
# )
# class CLIPTextModel(CLIPPreTrainedModel):
#     config_class = CLIPTextConfig

#     _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]

#     def __init__(self, config: CLIPTextConfig):
#         super().__init__(config)
#         self.text_model = CLIPTextTransformer(config)
#         # Initialize weights and apply final processing
#         self.post_init()

#     def get_input_embeddings(self) -> nn.Module:
#         return self.text_model.embeddings.token_embedding

#     def set_input_embeddings(self, value):
#         self.text_model.embeddings.token_embedding = value

#     @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
#     @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
#     def forward(
#         self,
#         input_ids: Optional[torch.Tensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> Union[Tuple, BaseModelOutputWithPooling]:
#         r"""
#         Returns:

#         Examples:

#         ```python
#         >>> from transformers import AutoTokenizer, CLIPTextModel

#         >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
#         >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

#         >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

#         >>> outputs = model(**inputs)
#         >>> last_hidden_state = outputs.last_hidden_state
#         >>> pooled_output = outputs.pooler_output  # pooled (EOS token) states
#         ```"""
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         return self.text_model(
#             input_ids=input_ids,
#             attention_mask=attention_mask,
#             position_ids=position_ids,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )


class CLIPVisionTransformer(nn.Module):
    def __init__(self, config: CLIPVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = CLIPVisionEmbeddings(config)
        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        self.encoder = CLIPEncoder(config)
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        if self.config.position_embedding_type == 'rope':
            head_dim = embed_dim // config.num_attention_heads
            self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)

    def rot_pos_emb(self, grid_thw):
        pos_ids = []
        t = 1
        spatial_merge_size = 1
        max_grid_size = 0
        resized_wh = []
        for h, w in grid_thw:
            w = w.item()
            h = h.item()
            w, h = get_hw_multiple_of((w, h), self.config.patch_size, max_size=(self.config.image_size, self.config.image_size))
            w = w // self.config.patch_size
            h = h // self.config.patch_size
            resized_wh.append((w, h))
            max_grid_size = max(max_grid_size, w, h)
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // spatial_merge_size,
                spatial_merge_size,
                w // spatial_merge_size,
                spatial_merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // spatial_merge_size,
                spatial_merge_size,
                w // spatial_merge_size,
                spatial_merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        #max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")
        
        inputs = []
        cu_seq_len = [0]
        max_seqlen = 0
        for pixel_value in pixel_values:
            hidden_states = self.embeddings(pixel_value.unsqueeze(0))
            if hidden_states.dtype != self.pre_layrnorm.weight.dtype:
                hidden_states = hidden_states.to(self.pre_layrnorm.weight.dtype)
            hidden_states = self.pre_layrnorm(hidden_states)
            hidden_states = hidden_states.permute(1, 0, 2).contiguous()
            cu_seq_len.append(hidden_states.size(0))
            max_seqlen = max(max_seqlen, hidden_states.size(0))
            inputs.append(hidden_states)
        inputs = torch.cat(inputs, dim=0)
        cu_seq_len = torch.tensor(cu_seq_len, device=inputs.device).to(torch.int32)
        cu_seq_len = torch.cumsum(cu_seq_len, dim=0).to(torch.int32)
        max_seqlen = torch.tensor([max_seqlen],  device=inputs.device).to(torch.int32)
        rotary_pos_emb = None
        if self.config.position_embedding_type == "rope":
            assert image_sizes is not None
            rotary_pos_emb = self.rot_pos_emb(image_sizes)
        encoder_outputs = self.encoder(
            inputs_embeds=inputs,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cu_seq_len=cu_seq_len,
            max_seqlen=max_seqlen,
            rotary_pos_emb=rotary_pos_emb,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        pooled_output = last_hidden_state[:, 0, :]
        pooled_output = self.post_layernorm(pooled_output)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """The vision model from CLIP without any head or projection on top.""",
    CLIP_START_DOCSTRING,
)
class CLIPVisionModel(CLIPPreTrainedModel):
    config_class = CLIPVisionConfig
    main_input_name = "pixel_values"
    _no_split_modules = ["CLIPEncoderLayer"]

    def __init__(self, config: CLIPVisionConfig):
        super().__init__(config)
        self.vision_model = CLIPVisionTransformer(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, CLIPVisionModel

        >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled CLS states
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        return self.vision_model(
            pixel_values=pixel_values,
            image_sizes=image_sizes,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


# @add_start_docstrings(CLIP_START_DOCSTRING)
# class CLIPModel(CLIPPreTrainedModel):
#     config_class = CLIPConfig
#     _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer", "CLIPVisionEmbeddings"]

#     def __init__(self, config: CLIPConfig):
#         super().__init__(config)

#         if not isinstance(config.text_config, CLIPTextConfig):
#             raise TypeError(
#                 "config.text_config is expected to be of type CLIPTextConfig but is of type"
#                 f" {type(config.text_config)}."
#             )

#         if not isinstance(config.vision_config, CLIPVisionConfig):
#             raise TypeError(
#                 "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
#                 f" {type(config.vision_config)}."
#             )

#         text_config = config.text_config
#         vision_config = config.vision_config

#         self.projection_dim = config.projection_dim
#         self.text_embed_dim = text_config.hidden_size
#         self.vision_embed_dim = vision_config.hidden_size

#         text_model = CLIPTextModel._from_config(text_config, attn_implementation=config._attn_implementation)
#         self.text_model = text_model.text_model

#         vision_model = CLIPVisionModel._from_config(vision_config, attn_implementation=config._attn_implementation)
#         self.vision_model = vision_model.vision_model

#         self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
#         self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
#         self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))

#         # Initialize weights and apply final processing
#         self.post_init()

#     @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
#     def get_text_features(
#         self,
#         input_ids: Optional[torch.Tensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> torch.FloatTensor:
#         r"""
#         Returns:
#             text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
#             applying the projection layer to the pooled output of [`CLIPTextModel`].

#         Examples:

#         ```python
#         >>> from transformers import AutoTokenizer, CLIPModel

#         >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
#         >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

#         >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
#         >>> text_features = model.get_text_features(**inputs)
#         ```"""
#         # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
#         output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
#         output_hidden_states = (
#             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
#         )
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         text_outputs = self.text_model(
#             input_ids=input_ids,
#             attention_mask=attention_mask,
#             position_ids=position_ids,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         pooled_output = text_outputs[1]
#         text_features = self.text_projection(pooled_output)

#         return text_features

#     @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
#     def get_image_features(
#         self,
#         pixel_values: Optional[torch.FloatTensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> torch.FloatTensor:
#         r"""
#         Returns:
#             image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
#             applying the projection layer to the pooled output of [`CLIPVisionModel`].

#         Examples:

#         ```python
#         >>> from PIL import Image
#         >>> import requests
#         >>> from transformers import AutoProcessor, CLIPModel

#         >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
#         >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

#         >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
#         >>> image = Image.open(requests.get(url, stream=True).raw)

#         >>> inputs = processor(images=image, return_tensors="pt")

#         >>> image_features = model.get_image_features(**inputs)
#         ```"""
#         # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
#         output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
#         output_hidden_states = (
#             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
#         )
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         vision_outputs = self.vision_model(
#             pixel_values=pixel_values,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         pooled_output = vision_outputs[1]  # pooled_output
#         image_features = self.visual_projection(pooled_output)

#         return image_features

#     @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
#     @replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig)
#     def forward(
#         self,
#         input_ids: Optional[torch.LongTensor] = None,
#         pixel_values: Optional[torch.FloatTensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.LongTensor] = None,
#         return_loss: Optional[bool] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> Union[Tuple, CLIPOutput]:
#         r"""
#         Returns:

#         Examples:

#         ```python
#         >>> from PIL import Image
#         >>> import requests
#         >>> from transformers import AutoProcessor, CLIPModel

#         >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
#         >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

#         >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
#         >>> image = Image.open(requests.get(url, stream=True).raw)

#         >>> inputs = processor(
#         ...     text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
#         ... )

#         >>> outputs = model(**inputs)
#         >>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
#         >>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities
#         ```"""
#         # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
#         output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
#         output_hidden_states = (
#             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
#         )
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         vision_outputs = self.vision_model(
#             pixel_values=pixel_values,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         text_outputs = self.text_model(
#             input_ids=input_ids,
#             attention_mask=attention_mask,
#             position_ids=position_ids,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         image_embeds = vision_outputs[1]
#         image_embeds = self.visual_projection(image_embeds)

#         text_embeds = text_outputs[1]
#         text_embeds = self.text_projection(text_embeds)

#         # normalized features
#         image_embeds = image_embeds / _get_vector_norm(image_embeds)
#         text_embeds = text_embeds / _get_vector_norm(text_embeds)

#         # cosine similarity as logits
#         logit_scale = self.logit_scale.exp()
#         logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * logit_scale.to(
#             text_embeds.device
#         )
#         logits_per_image = logits_per_text.t()

#         loss = None
#         if return_loss:
#             loss = clip_loss(logits_per_text)

#         if not return_dict:
#             output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
#             return ((loss,) + output) if loss is not None else output

#         return CLIPOutput(
#             loss=loss,
#             logits_per_image=logits_per_image,
#             logits_per_text=logits_per_text,
#             text_embeds=text_embeds,
#             image_embeds=image_embeds,
#             text_model_output=text_outputs,
#             vision_model_output=vision_outputs,
#         )


# @add_start_docstrings(
#     """
#     CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
#     """,
#     CLIP_START_DOCSTRING,
# )
# class CLIPTextModelWithProjection(CLIPPreTrainedModel):
#     config_class = CLIPTextConfig

#     _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]

#     def __init__(self, config: CLIPTextConfig):
#         super().__init__(config)

#         text_model = CLIPTextModel._from_config(config, attn_implementation=config._attn_implementation)
#         self.text_model = text_model.text_model

#         self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)

#         # Initialize weights and apply final processing
#         self.post_init()

#     def get_input_embeddings(self) -> nn.Module:
#         return self.text_model.embeddings.token_embedding

#     def set_input_embeddings(self, value):
#         self.text_model.embeddings.token_embedding = value

#     @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
#     @replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig)
#     def forward(
#         self,
#         input_ids: Optional[torch.Tensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> Union[Tuple, CLIPTextModelOutput]:
#         r"""
#         Returns:

#         Examples:

#         ```python
#         >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection

#         >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
#         >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

#         >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

#         >>> outputs = model(**inputs)
#         >>> text_embeds = outputs.text_embeds
#         ```"""
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         text_outputs = self.text_model(
#             input_ids=input_ids,
#             attention_mask=attention_mask,
#             position_ids=position_ids,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         pooled_output = text_outputs[1]

#         text_embeds = self.text_projection(pooled_output)

#         if not return_dict:
#             outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
#             return tuple(output for output in outputs if output is not None)

#         return CLIPTextModelOutput(
#             text_embeds=text_embeds,
#             last_hidden_state=text_outputs.last_hidden_state,
#             hidden_states=text_outputs.hidden_states,
#             attentions=text_outputs.attentions,
#         )


# @add_start_docstrings(
#     """
#     CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
#     """,
#     CLIP_START_DOCSTRING,
# )
# class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
#     config_class = CLIPVisionConfig
#     main_input_name = "pixel_values"

#     def __init__(self, config: CLIPVisionConfig):
#         super().__init__(config)

#         vision_model = CLIPVisionModel._from_config(config, attn_implementation=config._attn_implementation)
#         self.vision_model = vision_model.vision_model

#         self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)

#         # Initialize weights and apply final processing
#         self.post_init()

#     def get_input_embeddings(self) -> nn.Module:
#         return self.vision_model.embeddings.patch_embedding

#     @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
#     @replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig)
#     def forward(
#         self,
#         pixel_values: Optional[torch.FloatTensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> Union[Tuple, CLIPVisionModelOutput]:
#         r"""
#         Returns:

#         Examples:

#         ```python
#         >>> from PIL import Image
#         >>> import requests
#         >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection

#         >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
#         >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

#         >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
#         >>> image = Image.open(requests.get(url, stream=True).raw)

#         >>> inputs = processor(images=image, return_tensors="pt")

#         >>> outputs = model(**inputs)
#         >>> image_embeds = outputs.image_embeds
#         ```"""
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         vision_outputs = self.vision_model(
#             pixel_values=pixel_values,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         pooled_output = vision_outputs[1]  # pooled_output

#         image_embeds = self.visual_projection(pooled_output)

#         if not return_dict:
#             outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
#             return tuple(output for output in outputs if output is not None)

#         return CLIPVisionModelOutput(
#             image_embeds=image_embeds,
#             last_hidden_state=vision_outputs.last_hidden_state,
#             hidden_states=vision_outputs.hidden_states,
#             attentions=vision_outputs.attentions,
#         )


# @add_start_docstrings(
#     """
#     CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
#     the patch tokens) e.g. for ImageNet.
#     """,
#     CLIP_START_DOCSTRING,
# )
# class CLIPForImageClassification(CLIPPreTrainedModel):
#     main_input_name = "pixel_values"

#     def __init__(self, config: CLIPConfig) -> None:
#         super().__init__(config)

#         self.num_labels = config.num_labels
#         vision_model = CLIPVisionModel._from_config(
#             config.vision_config, attn_implementation=config._attn_implementation
#         )
#         self.vision_model = vision_model.vision_model

#         # Classifier head
#         self.classifier = (
#             nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
#         )

#         # Initialize weights and apply final processing
#         self.post_init()

#     @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
#     @add_code_sample_docstrings(
#         checkpoint=_IMAGE_CLASS_CHECKPOINT,
#         output_type=ImageClassifierOutput,
#         config_class=_CONFIG_FOR_DOC,
#         expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
#     )
#     def forward(
#         self,
#         pixel_values: Optional[torch.Tensor] = None,
#         labels: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#     ) -> Union[tuple, ImageClassifierOutput]:
#         r"""
#         labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
#             Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
#             config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
#             `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
#         """
#         output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
#         output_hidden_states = (
#             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
#         )
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict

#         outputs = self.vision_model(
#             pixel_values,
#             output_attentions=output_attentions,
#             output_hidden_states=output_hidden_states,
#             return_dict=return_dict,
#         )

#         sequence_output = outputs[0]

#         # average pool the patch tokens
#         sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
#         # apply classifier
#         logits = self.classifier(sequence_output)

#         loss = None
#         if labels is not None:
#             # move labels to correct device to enable model parallelism
#             labels = labels.to(logits.device)
#             if self.config.problem_type is None:
#                 if self.num_labels == 1:
#                     self.config.problem_type = "regression"
#                 elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
#                     self.config.problem_type = "single_label_classification"
#                 else:
#                     self.config.problem_type = "multi_label_classification"

#             if self.config.problem_type == "regression":
#                 loss_fct = MSELoss()
#                 if self.num_labels == 1:
#                     loss = loss_fct(logits.squeeze(), labels.squeeze())
#                 else:
#                     loss = loss_fct(logits, labels)
#             elif self.config.problem_type == "single_label_classification":
#                 loss_fct = CrossEntropyLoss()
#                 loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
#             elif self.config.problem_type == "multi_label_classification":
#                 loss_fct = BCEWithLogitsLoss()
#                 loss = loss_fct(logits, labels)

#         if not return_dict:
#             output = (logits,) + outputs[2:]
#             return ((loss,) + output) if loss is not None else output

#         return ImageClassifierOutput(
#             loss=loss,
#             logits=logits,
#             hidden_states=outputs.hidden_states,
#             attentions=outputs.attentions,
#         )