File size: 18,647 Bytes
cfde609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
"""
Processor class for MiniMaxVL01.
"""
from typing import List, Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin#, _validate_images_text_input_order
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from .image_processor import CustomBatchFeature
logger = logging.get_logger(__name__)
import os
LEGACY_PROCESSING = int(os.getenv('LEGACY_PROCESSING', 1))
class MiniMaxVL01ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {},
}
def get_hw_multiple_of(image_size, multiple, max_size=None):
w, h = image_size
new_w = w if w % multiple == 0 else w + (multiple - w % multiple)
new_h = h if h % multiple == 0 else h + (multiple - h % multiple)
if max_size is not None:
assert isinstance(max_size, (list, tuple)) and len(max_size) == 2
max_w, max_h = max_size
assert max_w % multiple == 0 and max_h % multiple == 0
if new_w > max_w or new_h > max_h:
# ratio = min(max_w / new_w, max_h / new_h)
# new_w = int(new_w * ratio)
# new_h = int(new_h * ratio)
new_w = min((new_w * max_w) // new_w, (new_w * max_h) // new_h)
new_h = min((new_h * max_w) // new_w, (new_h * max_h) // new_h)
new_w = new_w if new_w % multiple == 0 else new_w + (multiple - new_w % multiple)
new_h = new_h if new_h % multiple == 0 else new_h + (multiple - new_h % multiple)
assert new_w % multiple == 0 and new_h % multiple == 0
assert new_w <= max_w and new_h <= max_h
return new_w, new_h
def split_special_tokens(text, special_tokens):
# 使用正则表达式匹配所有特殊标记及其前后内容
import re
pattern = '|'.join(map(re.escape, special_tokens))
return re.split(f'({pattern})', text)
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
# Calculate effective and wasted resolutions
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def get_w_h_num(resolution, best_resolution):
original_width, original_height = resolution
current_width, current_height = best_resolution
current_height = int(current_height)
current_width = int(current_width)
original_height = int(original_height)
original_width = int(original_width)
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * current_width) // original_width
padding = (current_height - new_height) // 2
w_num = current_width
h_num = current_height - 2*padding
else:
scale_factor = current_height / original_height
new_width = int(original_width * current_height) // original_height
padding = (current_width - new_width) // 2
w_num = current_width - 2*padding
h_num = current_height
return (w_num, h_num)
def get_num_token(img_h, img_w, grid_pinpoints, patch_size):
#patch_size = 14
#grid_pinpoints = eval("[(336, 336), (336, 672), (336, 1008), (336, 1344), (336, 1680), (336, 2016), (672, 336), (672, 672), (672, 1008), (672, 1344), (672, 1680), (672, 2016), (1008, 336), (1008, 672), (1008, 1008), (1008, 1344), (1008, 1680), (1008, 2016), (1344, 336), (1344, 672), (1344, 1008), (1344, 1344), (1344, 1680), (1344, 2016), (1680, 336), (1680, 672), (1680, 1008), (1680, 1344), (1680, 1680), (1680, 2016), (2016, 336), (2016, 672), (2016, 1008), (2016, 1344), (2016, 1680), (2016, 2016)]")
best_resolution = select_best_resolution((img_w,img_h), grid_pinpoints)
resized_w, resized_h = best_resolution
w_num, h_num = get_w_h_num((img_w, img_h), (resized_w// patch_size, resized_h// patch_size))
total_token = int((w_num+1) * h_num) + (336//patch_size)**2
return total_token
class MiniMaxVL01Processor(ProcessorMixin):
r"""
Constructs a MiniMaxVL01 processor which wraps a MiniMaxVL01 image processor and a MiniMaxVL01 tokenizer into a single processor.
[`MiniMaxVL01Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~MiniMaxVL01Processor.__call__`] and [`~MiniMaxVL01Processor.decode`] for more information.
Args:
image_processor ([`CLIPImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*):
Patch size from the vision tower.
vision_feature_select_strategy (`str`, *optional*):
The feature selection strategy used to select the vision feature from the vision backbone.
Shoudl be same as in model's config
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"<image>"`):
Special token used to denote image location.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "patch_size", "vision_feature_select_strategy", "image_token"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size=None,
vision_feature_select_strategy=None,
chat_template=None,
image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
**kwargs,
):
self.patch_size = patch_size
self.vision_feature_select_strategy = vision_feature_select_strategy
self.image_token = image_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.patch_size = image_processor.patch_size
self.grid_pinpoints = image_processor.image_grid_pinpoints
self.max_size = image_processor.size
self.process_image_mode = image_processor.process_image_mode
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is None and text is None:
raise ValueError("You have to specify at least one of `images` or `text`.")
# check if images and text inputs are reversed for BC
#images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
MiniMaxVL01ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# try to expand inputs in processing if we have the necessary parts
prompt_strings = text
if image_inputs.get("pixel_values") is not None:
if self.process_image_mode == 'anyres':
if LEGACY_PROCESSING:# 推理时不提前替换image token
pixel_values = image_inputs["pixel_values"]
image_sizes = image_inputs["image_sizes"]
# height, width = get_image_size(to_numpy_array(pixel_values[0]))
# num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1
# if self.vision_feature_select_strategy == "default":
# num_image_tokens -= 1
all_image_tokens = []
for pixel_value, image_size in zip(pixel_values, image_sizes):
height, width = image_size
num_image_tokens = get_num_token(height, width, self.grid_pinpoints, self.patch_size)
# if self.vision_feature_select_strategy == "default":
# num_image_tokens -= 1
all_image_tokens.append(num_image_tokens)
prompt_strings = []
image_index = 0
for sample in text:
split_text = split_special_tokens(sample, [self.image_token])
final_text = ''
for i, _sample in enumerate(split_text):
if _sample == self.image_token:
final_text += _sample * all_image_tokens[image_index]
image_index += 1
else:
final_text += _sample
#sample = sample.replace(self.image_token, self.image_token * all_image_tokens)
prompt_strings.append(final_text)
elif self.process_image_mode == 'resize':
pixel_values = image_inputs["pixel_values"]
# height, width = get_image_size(to_numpy_array(pixel_values[0]))
# num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1
# if self.vision_feature_select_strategy == "default":
# num_image_tokens -= 1
all_image_tokens = []
for pixel_value in pixel_values:
height, width = get_image_size(to_numpy_array(pixel_value))
all_image_tokens.append(int(height*width/self.patch_size**2))
prompt_strings = []
image_index = 0
for sample in text:
split_text = split_special_tokens(sample, [self.image_token])
final_text = ''
for i, _sample in enumerate(split_text):
if _sample == self.image_token:
final_text += _sample * all_image_tokens[image_index]
image_index += 1
else:
final_text += _sample
#sample = sample.replace(self.image_token, self.image_token * all_image_tokens)
prompt_strings.append(final_text)
else:
if self.patch_size is not None:
# Replace the image token with the expanded image token sequence
pixel_values = image_inputs["pixel_values"]
# height, width = get_image_size(to_numpy_array(pixel_values[0]))
# num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1
# if self.vision_feature_select_strategy == "default":
# num_image_tokens -= 1
all_image_tokens = []
for pixel_value in pixel_values:
height, width = get_image_size(to_numpy_array(pixel_value))
new_width, new_height = get_hw_multiple_of((width, height), self.patch_size, self.max_size)
num_image_tokens = (new_height // self.patch_size) * (new_width // self.patch_size)# + 1
# if self.vision_feature_select_strategy == "default":
# num_image_tokens -= 1
all_image_tokens.append(num_image_tokens)
prompt_strings = []
image_index = 0
for sample in text:
split_text = split_special_tokens(sample, [self.image_token])
final_text = ''
for i, _sample in enumerate(split_text):
if _sample == self.image_token:
final_text += _sample * all_image_tokens[image_index]
image_index += 1
else:
final_text += _sample
#sample = sample.replace(self.image_token, self.image_token * all_image_tokens)
prompt_strings.append(final_text)
else:
logger.warning_once(
"Expanding inputs for image tokens in MiniMaxVL01 should be done in processing. "
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
)
raise ValueError(
"You need to provide `patch_size` and `vision_feature_select_strategy` in the model's processing config to expand inputs for image tokens."
)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
#return {**text_inputs, **image_inputs}
return CustomBatchFeature(data={**text_inputs, **image_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|