""" Processor class for MiniMaxVL01. """ from typing import List, Union from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput, get_image_size, to_numpy_array from transformers.processing_utils import ProcessingKwargs, ProcessorMixin#, _validate_images_text_input_order from transformers.tokenization_utils_base import PreTokenizedInput, TextInput from transformers.utils import logging from .image_processor import CustomBatchFeature logger = logging.get_logger(__name__) import os LEGACY_PROCESSING = int(os.getenv('LEGACY_PROCESSING', 1)) class MiniMaxVL01ProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": {}, } def get_hw_multiple_of(image_size, multiple, max_size=None): w, h = image_size new_w = w if w % multiple == 0 else w + (multiple - w % multiple) new_h = h if h % multiple == 0 else h + (multiple - h % multiple) if max_size is not None: assert isinstance(max_size, (list, tuple)) and len(max_size) == 2 max_w, max_h = max_size assert max_w % multiple == 0 and max_h % multiple == 0 if new_w > max_w or new_h > max_h: # ratio = min(max_w / new_w, max_h / new_h) # new_w = int(new_w * ratio) # new_h = int(new_h * ratio) new_w = min((new_w * max_w) // new_w, (new_w * max_h) // new_h) new_h = min((new_h * max_w) // new_w, (new_h * max_h) // new_h) new_w = new_w if new_w % multiple == 0 else new_w + (multiple - new_w % multiple) new_h = new_h if new_h % multiple == 0 else new_h + (multiple - new_h % multiple) assert new_w % multiple == 0 and new_h % multiple == 0 assert new_w <= max_w and new_h <= max_h return new_w, new_h def split_special_tokens(text, special_tokens): # 使用正则表达式匹配所有特殊标记及其前后内容 import re pattern = '|'.join(map(re.escape, special_tokens)) return re.split(f'({pattern})', text) def select_best_resolution(original_size, possible_resolutions): """ Selects the best resolution from a list of possible resolutions based on the original size. Args: original_size (tuple): The original size of the image in the format (width, height). possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. Returns: tuple: The best fit resolution in the format (width, height). """ original_width, original_height = original_size best_fit = None max_effective_resolution = 0 min_wasted_resolution = float("inf") for width, height in possible_resolutions: # Calculate the downscaled size to keep the aspect ratio scale = min(width / original_width, height / original_height) downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) # Calculate effective and wasted resolutions effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) wasted_resolution = (width * height) - effective_resolution if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): max_effective_resolution = effective_resolution min_wasted_resolution = wasted_resolution best_fit = (width, height) return best_fit def get_w_h_num(resolution, best_resolution): original_width, original_height = resolution current_width, current_height = best_resolution current_height = int(current_height) current_width = int(current_width) original_height = int(original_height) original_width = int(original_width) original_aspect_ratio = original_width / original_height current_aspect_ratio = current_width / current_height if original_aspect_ratio > current_aspect_ratio: scale_factor = current_width / original_width new_height = int(original_height * current_width) // original_width padding = (current_height - new_height) // 2 w_num = current_width h_num = current_height - 2*padding else: scale_factor = current_height / original_height new_width = int(original_width * current_height) // original_height padding = (current_width - new_width) // 2 w_num = current_width - 2*padding h_num = current_height return (w_num, h_num) def get_num_token(img_h, img_w, grid_pinpoints, patch_size): #patch_size = 14 #grid_pinpoints = eval("[(336, 336), (336, 672), (336, 1008), (336, 1344), (336, 1680), (336, 2016), (672, 336), (672, 672), (672, 1008), (672, 1344), (672, 1680), (672, 2016), (1008, 336), (1008, 672), (1008, 1008), (1008, 1344), (1008, 1680), (1008, 2016), (1344, 336), (1344, 672), (1344, 1008), (1344, 1344), (1344, 1680), (1344, 2016), (1680, 336), (1680, 672), (1680, 1008), (1680, 1344), (1680, 1680), (1680, 2016), (2016, 336), (2016, 672), (2016, 1008), (2016, 1344), (2016, 1680), (2016, 2016)]") best_resolution = select_best_resolution((img_w,img_h), grid_pinpoints) resized_w, resized_h = best_resolution w_num, h_num = get_w_h_num((img_w, img_h), (resized_w// patch_size, resized_h// patch_size)) total_token = int((w_num+1) * h_num) + (336//patch_size)**2 return total_token class MiniMaxVL01Processor(ProcessorMixin): r""" Constructs a MiniMaxVL01 processor which wraps a MiniMaxVL01 image processor and a MiniMaxVL01 tokenizer into a single processor. [`MiniMaxVL01Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~MiniMaxVL01Processor.__call__`] and [`~MiniMaxVL01Processor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. patch_size (`int`, *optional*): Patch size from the vision tower. vision_feature_select_strategy (`str`, *optional*): The feature selection strategy used to select the vision feature from the vision backbone. Shoudl be same as in model's config chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. image_token (`str`, *optional*, defaults to `""`): Special token used to denote image location. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template", "patch_size", "vision_feature_select_strategy", "image_token"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer=None, patch_size=None, vision_feature_select_strategy=None, chat_template=None, image_token="", # set the default and let users change if they have peculiar special tokens in rare cases **kwargs, ): self.patch_size = patch_size self.vision_feature_select_strategy = vision_feature_select_strategy self.image_token = image_token super().__init__(image_processor, tokenizer, chat_template=chat_template) self.patch_size = image_processor.patch_size self.grid_pinpoints = image_processor.image_grid_pinpoints self.max_size = image_processor.size self.process_image_mode = image_processor.process_image_mode def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is None and text is None: raise ValueError("You have to specify at least one of `images` or `text`.") # check if images and text inputs are reversed for BC #images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( MiniMaxVL01ProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) else: image_inputs = {} if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") # try to expand inputs in processing if we have the necessary parts prompt_strings = text if image_inputs.get("pixel_values") is not None: if self.process_image_mode == 'anyres': if LEGACY_PROCESSING:# 推理时不提前替换image token pixel_values = image_inputs["pixel_values"] image_sizes = image_inputs["image_sizes"] # height, width = get_image_size(to_numpy_array(pixel_values[0])) # num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1 # if self.vision_feature_select_strategy == "default": # num_image_tokens -= 1 all_image_tokens = [] for pixel_value, image_size in zip(pixel_values, image_sizes): height, width = image_size num_image_tokens = get_num_token(height, width, self.grid_pinpoints, self.patch_size) # if self.vision_feature_select_strategy == "default": # num_image_tokens -= 1 all_image_tokens.append(num_image_tokens) prompt_strings = [] image_index = 0 for sample in text: split_text = split_special_tokens(sample, [self.image_token]) final_text = '' for i, _sample in enumerate(split_text): if _sample == self.image_token: final_text += _sample * all_image_tokens[image_index] image_index += 1 else: final_text += _sample #sample = sample.replace(self.image_token, self.image_token * all_image_tokens) prompt_strings.append(final_text) elif self.process_image_mode == 'resize': pixel_values = image_inputs["pixel_values"] # height, width = get_image_size(to_numpy_array(pixel_values[0])) # num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1 # if self.vision_feature_select_strategy == "default": # num_image_tokens -= 1 all_image_tokens = [] for pixel_value in pixel_values: height, width = get_image_size(to_numpy_array(pixel_value)) all_image_tokens.append(int(height*width/self.patch_size**2)) prompt_strings = [] image_index = 0 for sample in text: split_text = split_special_tokens(sample, [self.image_token]) final_text = '' for i, _sample in enumerate(split_text): if _sample == self.image_token: final_text += _sample * all_image_tokens[image_index] image_index += 1 else: final_text += _sample #sample = sample.replace(self.image_token, self.image_token * all_image_tokens) prompt_strings.append(final_text) else: if self.patch_size is not None: # Replace the image token with the expanded image token sequence pixel_values = image_inputs["pixel_values"] # height, width = get_image_size(to_numpy_array(pixel_values[0])) # num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1 # if self.vision_feature_select_strategy == "default": # num_image_tokens -= 1 all_image_tokens = [] for pixel_value in pixel_values: height, width = get_image_size(to_numpy_array(pixel_value)) new_width, new_height = get_hw_multiple_of((width, height), self.patch_size, self.max_size) num_image_tokens = (new_height // self.patch_size) * (new_width // self.patch_size)# + 1 # if self.vision_feature_select_strategy == "default": # num_image_tokens -= 1 all_image_tokens.append(num_image_tokens) prompt_strings = [] image_index = 0 for sample in text: split_text = split_special_tokens(sample, [self.image_token]) final_text = '' for i, _sample in enumerate(split_text): if _sample == self.image_token: final_text += _sample * all_image_tokens[image_index] image_index += 1 else: final_text += _sample #sample = sample.replace(self.image_token, self.image_token * all_image_tokens) prompt_strings.append(final_text) else: logger.warning_once( "Expanding inputs for image tokens in MiniMaxVL01 should be done in processing. " "Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly " "with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. " "Using processors without these attributes in the config is deprecated and will throw an error in v4.47." ) raise ValueError( "You need to provide `patch_size` and `vision_feature_select_strategy` in the model's processing config to expand inputs for image tokens." ) text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"]) #return {**text_inputs, **image_inputs} return CustomBatchFeature(data={**text_inputs, **image_inputs}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))