ToriiGate-v0.3 / batch_processing_example.py
Minthy's picture
Upload 2 files
2de8d8c verified
raw
history blame
2.84 kB
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image
from tqdm import tqdm
from pathlib import Path
from os.path import join as opj
from os import listdir
model_name_or_path="Minthy/ToriiGate-v0.3"
s_dir='./images_to_caption'
caption_suffix='_caption.txt' #suffix for generated captions
tags_suffix='_tags.txt' #suggix for file with booru tags
use_tags=True #set to True for using with reference tags
image_extensions=['.jpg','.png','.webp','.jpeg']
DEVICE = "cuda:0" #change to your device
processor = AutoProcessor.from_pretrained(model_name_or_path) #or change to local path
model = AutoModelForVision2Seq.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
# _attn_implementation="flash_attention_2", #if installed
).to(DEVICE)
filelist=[fn for fn in listdir(s_dir) if any([fn.endswith(a) for a in image_extensions])]
for fn in tqdm(filelist,desc='Captioninig'):
image = load_image(opj(s_dir,fn))
###Trained options
user_prompt="Describe the picture in structuted json-like format."
#user_prompt="Give a long and detailed description of the picture."
#user_prompt="Describe the picture briefly."
###Any other questions or instructions
#user_prompt="What color is the ribbon in the character's hair?"
#...
#Optional, add booru tags
if use_tags:
try:
tags=open(opj(s_dir,Path(fn).stem+tags_suffix)).read().strip()
user_prompt+=' Also here are booru tags for better understanding of the picture, you can use them as reference.'
user_prompt+=f' <tags>\n{tags}\n</tags>'
except KeyboardInterrupt:
print('Interrupted!')
quit()
except Exception as err:
print(err)
continue
messages = [
{
#Important!
"role": "system",
"content": [
{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored. Help user with his hask."}
]
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": user_prompt}
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
# Generate
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
caption=generated_texts[0].split('Assistant: ')[1]
with open(opj(s_dir,Path(fn).stem+caption_suffix),'w',encoding='utf-8',errors='ignore') as outf:
outf.write(caption)