MoFabian commited on
Commit
0a943ed
·
1 Parent(s): cbe4347

first test

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.39 +/- 17.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f55724305e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5572430670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5572430700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5572430790>", "_build": "<function ActorCriticPolicy._build at 0x7f5572430820>", "forward": "<function ActorCriticPolicy.forward at 0x7f55724308b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5572430940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f55724309d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5572430a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5572430af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5572430b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f55724a7e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670831328634064391, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO0+7yySLY/0hfevm2bbDu4q4U8gQqEPAAAAAAAAAAAAOgBvvT/aD5QOvw8+R/ZviL18rtUWSc9AAAAAAAAAAAzADO+VBOZvLdKk7vxOxu6wnEFPjbD+ToAAIA/AACAP2ajeT0302I+Y15Vviaxqb562X+7OEGYvQAAAAAAAAAAAOjXvXTwuj9qzR+/RTN+vcIn0Lzn9ie+AAAAAAAAAAAITpG+v+M6P9w6Nj4rkcW+XLcdvp6hdT4AAAAAAAAAAM0/AT2eb7o/S9ocP8JDtD4XyIi8iN+sPAAAAAAAAAAAZg2GPa7Rpbq/nR+0hc7KL6IRBboAY54zAACAPwAAgD8G3hU+T7E1vL1d2TvUVnW6GDeevVO4RbsAAIA/AACAP0Z8Fj6r1+c98quCvpCJq74kfAS9cXItvQAAAAAAAAAAM7NlPNcsAbvY7JI7Z5WyPDh0qbuiCZk9AACAPwAAgD/N2IC7XGsNug7IMT5BG7q4QyOtuxI7urcAAIA/AACAP2bfiz3oFbU/R1U4P65vsb1ZzOy77rASPgAAAAAAAAAAzbjovcM1S7pqWCk2ES0TspAKK7v+L0y1AACAPwAAgD+adN28h+U8P7aOFL1AAy+/kziLO/2r/TsAAAAAAAAAAAAizjzhkOe6SLVBvAAJ7zxR1OS77sHKPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2hznNiFGc0CUhpRSlIwBbJRL3owBdJRHQKg4YKG+K0l1fZQoaAZoCWgPQwh7wac5eV9uQJSGlFKUaBVLn2gWR0CoOGKd6LOzdX2UKGgGaAloD0MIBtodUoyCcUCUhpRSlGgVS8RoFkdAqDiIN0/4ZnV9lChoBmgJaA9DCLE1W3kJu3NAlIaUUpRoFUvHaBZHQKg45a/yoXN1fZQoaAZoCWgPQwh8uOS4U0RwQJSGlFKUaBVLtGgWR0CoORQXhwVCdX2UKGgGaAloD0MIQ46tZwgmcUCUhpRSlGgVS65oFkdAqDk0s189fXV9lChoBmgJaA9DCGzoZn+gVnFAlIaUUpRoFUu7aBZHQKg5aKjzqbB1fZQoaAZoCWgPQwiG4o43OYZyQJSGlFKUaBVLx2gWR0CoOZbSy+pPdX2UKGgGaAloD0MITtGRXH5cc0CUhpRSlGgVS8BoFkdAqDmWeSSvDHV9lChoBmgJaA9DCJc8npafqHJAlIaUUpRoFUvmaBZHQKg57c6/7BR1fZQoaAZoCWgPQwh2VDVB1BFxQJSGlFKUaBVLu2gWR0CoOgvuG9HudX2UKGgGaAloD0MIVP61vDIWckCUhpRSlGgVS9poFkdAqDoQ5HVf/nV9lChoBmgJaA9DCMmvH2KDHXNAlIaUUpRoFUu9aBZHQKg6SHTqjah1fZQoaAZoCWgPQwgof/eOWk5zQJSGlFKUaBVLy2gWR0CoOk0g0TDgdX2UKGgGaAloD0MI7Sqk/CSrcECUhpRSlGgVS7xoFkdAqDplhE0BO3V9lChoBmgJaA9DCKsHzEMmSHJAlIaUUpRoFUvVaBZHQKg6fe2NNrV1fZQoaAZoCWgPQwj93NCUXcNyQJSGlFKUaBVLzWgWR0CoOrqNp/PPdX2UKGgGaAloD0MI5Nak21Jic0CUhpRSlGgVS95oFkdAqDq+z0HyE3V9lChoBmgJaA9DCIaSyamdgHNAlIaUUpRoFUuxaBZHQKg60j/Mnqp1fZQoaAZoCWgPQwhuE+6V+WtxQJSGlFKUaBVLv2gWR0CoOyG7SRbKdX2UKGgGaAloD0MIEALyJVS4b0CUhpRSlGgVS85oFkdAqDtrJr+HanV9lChoBmgJaA9DCJPIPsjyF3BAlIaUUpRoFUvFaBZHQKg7sr5IpYt1fZQoaAZoCWgPQwgCYhIuZC5xQJSGlFKUaBVL1WgWR0CoO7TuWrwOdX2UKGgGaAloD0MIxAq3fGS2cUCUhpRSlGgVS8loFkdAqDvCrHU+cHV9lChoBmgJaA9DCKwcWmQ7625AlIaUUpRoFUusaBZHQKg7wrhisn11fZQoaAZoCWgPQwhvhEVFXF9xQJSGlFKUaBVLn2gWR0CoPBYpUgjhdX2UKGgGaAloD0MIIGKDhdNVc0CUhpRSlGgVS89oFkdAqDxAbIcR2HV9lChoBmgJaA9DCBYzwtuD4nJAlIaUUpRoFUvVaBZHQKg8ViwSrYJ1fZQoaAZoCWgPQwg58kBkkRJzQJSGlFKUaBVLymgWR0CoPHX5eqrBdX2UKGgGaAloD0MIK4TVWEKcZECUhpRSlGgVTegDaBZHQKg8hQ9A5aN1fZQoaAZoCWgPQwjp1mt6kFZzQJSGlFKUaBVLtmgWR0CoPK/R3NcGdX2UKGgGaAloD0MIByXMtH3GbkCUhpRSlGgVS7doFkdAqDy2WyC4BnV9lChoBmgJaA9DCCtsBrhgyXFAlIaUUpRoFUvmaBZHQKg8uSX+l0p1fZQoaAZoCWgPQwhSKAtfXyByQJSGlFKUaBVL12gWR0CoPMcAq/dqdX2UKGgGaAloD0MIGjIepRLacECUhpRSlGgVS7RoFkdAqD0CR4hUznV9lChoBmgJaA9DCNS6DWo/mHJAlIaUUpRoFUvtaBZHQKg9PwsoUi91fZQoaAZoCWgPQwhBg02dx99tQJSGlFKUaBVLsmgWR0CoPYLIPsiTdX2UKGgGaAloD0MIdqimJKuIcUCUhpRSlGgVS89oFkdAqD3Jf8dgfHV9lChoBmgJaA9DCKezk8HRAnFAlIaUUpRoFUvsaBZHQKg91GiHqNZ1fZQoaAZoCWgPQwjBHhMpDWV0QJSGlFKUaBVLtWgWR0CoPeFS88LbdX2UKGgGaAloD0MI/kgRGZbCckCUhpRSlGgVS+FoFkdAqD33YYixFHV9lChoBmgJaA9DCMwKRbrf7nBAlIaUUpRoFUvfaBZHQKg9/c8kleF1fZQoaAZoCWgPQwiH/Z5Yp+VwQJSGlFKUaBVLoWgWR0CoPg8Oby6MdX2UKGgGaAloD0MIY5y/CcXMcUCUhpRSlGgVS8NoFkdAqD4oD1XeWXV9lChoBmgJaA9DCL/WpUYou3NAlIaUUpRoFUvEaBZHQKg+Om3vx6R1fZQoaAZoCWgPQwgUlnhAGUJxQJSGlFKUaBVLsWgWR0CoPl7LU1AJdX2UKGgGaAloD0MI83aE0wJib0CUhpRSlGgVS71oFkdAqD6Ejs2NvXV9lChoBmgJaA9DCGjPZWoS93JAlIaUUpRoFUviaBZHQKg+nuZThpB1fZQoaAZoCWgPQwiTjnIw2xFxQJSGlFKUaBVL32gWR0CoPtNGus90dX2UKGgGaAloD0MIDcNHxJRWckCUhpRSlGgVS9xoFkdAqD7dFQVKw3V9lChoBmgJaA9DCEnyXN8HxHBAlIaUUpRoFUvRaBZHQKg/AhBZ6ld1fZQoaAZoCWgPQwj/ykqT0u9xQJSGlFKUaBVLw2gWR0CoPyHCoCMhdX2UKGgGaAloD0MIK78MxoiiUUCUhpRSlGgVS4doFkdAqD82S2Yv4HV9lChoBmgJaA9DCBSYTus2eW9AlIaUUpRoFUu0aBZHQKg/ilvZRKp1fZQoaAZoCWgPQwhn0xHATc1wQJSGlFKUaBVLv2gWR0CoP5Auyu6mdX2UKGgGaAloD0MIGTvhJbiscUCUhpRSlGgVS9NoFkdAqD/7z06HTXV9lChoBmgJaA9DCHNmu0KfTHFAlIaUUpRoFUvOaBZHQKhAIEK3NLV1fZQoaAZoCWgPQwisWPymMENyQJSGlFKUaBVL3mgWR0CoQDOqebuudX2UKGgGaAloD0MIcAuW6oLrckCUhpRSlGgVS+RoFkdAqEB1rl/6PHV9lChoBmgJaA9DCJxpwvaTx3BAlIaUUpRoFUuuaBZHQKhAkIrvsqt1fZQoaAZoCWgPQwgAGqVLf15xQJSGlFKUaBVL1WgWR0CoQKLKmsNldX2UKGgGaAloD0MIWksBaX/sb0CUhpRSlGgVS6doFkdAqEC3vv0AcXV9lChoBmgJaA9DCGQ730+NfnJAlIaUUpRoFUvBaBZHQKhA0SOinHh1fZQoaAZoCWgPQwiQvd79sSV0QJSGlFKUaBVL+GgWR0CoQNfrB0p3dX2UKGgGaAloD0MIfEW3XlOYbkCUhpRSlGgVS7xoFkdAqEExN0vGqHV9lChoBmgJaA9DCBQEj2/vM25AlIaUUpRoFUvHaBZHQKhBNeRgZ0l1fZQoaAZoCWgPQwg8nwH1pitzQJSGlFKUaBVLwGgWR0CoQau+ZgG9dX2UKGgGaAloD0MI5j45ClAycECUhpRSlGgVS71oFkdAqEIxRoAXEnV9lChoBmgJaA9DCOlkqfW+UXFAlIaUUpRoFUvlaBZHQKhCM1KGtZF1fZQoaAZoCWgPQwgouFhRw29zQJSGlFKUaBVLvWgWR0CoQnLl3hXKdX2UKGgGaAloD0MInpYfuErNcUCUhpRSlGgVS9NoFkdAqEKl/4Irv3V9lChoBmgJaA9DCIiAQ6hSzXNAlIaUUpRoFU2AAWgWR0CoQuDG1hLHdX2UKGgGaAloD0MILXk8Lf8zc0CUhpRSlGgVS7loFkdAqEMrJfYzznV9lChoBmgJaA9DCOguibOiqHJAlIaUUpRoFUvkaBZHQKhDQ/bj94x1fZQoaAZoCWgPQwgA5lq0QGBxQJSGlFKUaBVL0GgWR0CoQ24+KTB7dX2UKGgGaAloD0MI2ubG9MQPc0CUhpRSlGgVS+poFkdAqEN3m3fAK3V9lChoBmgJaA9DCNfep6pQkHFAlIaUUpRoFUuxaBZHQKhDd8eCCjF1fZQoaAZoCWgPQwhuowG8BThwQJSGlFKUaBVL6GgWR0CoQ4Pkili0dX2UKGgGaAloD0MI7rH0oUtKcUCUhpRSlGgVS8NoFkdAqEOuIAOrhnV9lChoBmgJaA9DCBuBeF0/0HJAlIaUUpRoFUv1aBZHQKhDvMaCL/F1fZQoaAZoCWgPQwgkRPmCFmhvQJSGlFKUaBVLr2gWR0CoQ+Hww0wbdX2UKGgGaAloD0MIMgQAx57zb0CUhpRSlGgVS71oFkdAqER4yfthNXV9lChoBmgJaA9DCMPy59vCB3NAlIaUUpRoFUvHaBZHQKhEl7KJVKh1fZQoaAZoCWgPQwhJ9DKKJTBxQJSGlFKUaBVLtmgWR0CoRQFe4TbndX2UKGgGaAloD0MIgXhdv2AackCUhpRSlGgVS9hoFkdAqEUF7x/d7HV9lChoBmgJaA9DCOONzCN/NnFAlIaUUpRoFUuYaBZHQKhFLlFMIu51fZQoaAZoCWgPQwgST3YzY4ZyQJSGlFKUaBVLrmgWR0CoRTMURFqjdX2UKGgGaAloD0MI1v1jIfr7cUCUhpRSlGgVS9xoFkdAqEVE2tMfzXV9lChoBmgJaA9DCMk88gcD03JAlIaUUpRoFUu4aBZHQKhFlYigTRJ1fZQoaAZoCWgPQwhKz/QSY/xxQJSGlFKUaBVLzGgWR0CoRaMKLKmsdX2UKGgGaAloD0MIIvq19RMycECUhpRSlGgVS9RoFkdAqEXv336AOXV9lChoBmgJaA9DCEwZOKAlV3JAlIaUUpRoFUu/aBZHQKhF+5wwTM91fZQoaAZoCWgPQwgurvGZ7PhxQJSGlFKUaBVL2GgWR0CoRglpGnXNdX2UKGgGaAloD0MIuLBuvPtmckCUhpRSlGgVS+ZoFkdAqEZduzhP03V9lChoBmgJaA9DCAqd19ilW3JAlIaUUpRoFUvVaBZHQKhGY1dgOSZ1fZQoaAZoCWgPQwiSy39IP3NyQJSGlFKUaBVLzGgWR0CoRuVDrqt6dX2UKGgGaAloD0MI1ub/VQdtckCUhpRSlGgVS+BoFkdAqEdDg0j1PHV9lChoBmgJaA9DCI+n5QeuA3JAlIaUUpRoFUvEaBZHQKhHWI/qxC91fZQoaAZoCWgPQwiq04GsZ0xwQJSGlFKUaBVLsmgWR0CoR2G16Vt5dX2UKGgGaAloD0MIzqlkAOjFcUCUhpRSlGgVS7toFkdAqEdnI2fkFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:558f0745eb4dcd3abead1c88430eafb475d0507d81971e47e1711f60a6eed1e1
3
+ size 147089
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f55724305e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5572430670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5572430700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5572430790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5572430820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f55724308b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5572430940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f55724309d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5572430a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5572430af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5572430b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f55724a7e70>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670831328634064391,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO0+7yySLY/0hfevm2bbDu4q4U8gQqEPAAAAAAAAAAAAOgBvvT/aD5QOvw8+R/ZviL18rtUWSc9AAAAAAAAAAAzADO+VBOZvLdKk7vxOxu6wnEFPjbD+ToAAIA/AACAP2ajeT0302I+Y15Vviaxqb562X+7OEGYvQAAAAAAAAAAAOjXvXTwuj9qzR+/RTN+vcIn0Lzn9ie+AAAAAAAAAAAITpG+v+M6P9w6Nj4rkcW+XLcdvp6hdT4AAAAAAAAAAM0/AT2eb7o/S9ocP8JDtD4XyIi8iN+sPAAAAAAAAAAAZg2GPa7Rpbq/nR+0hc7KL6IRBboAY54zAACAPwAAgD8G3hU+T7E1vL1d2TvUVnW6GDeevVO4RbsAAIA/AACAP0Z8Fj6r1+c98quCvpCJq74kfAS9cXItvQAAAAAAAAAAM7NlPNcsAbvY7JI7Z5WyPDh0qbuiCZk9AACAPwAAgD/N2IC7XGsNug7IMT5BG7q4QyOtuxI7urcAAIA/AACAP2bfiz3oFbU/R1U4P65vsb1ZzOy77rASPgAAAAAAAAAAzbjovcM1S7pqWCk2ES0TspAKK7v+L0y1AACAPwAAgD+adN28h+U8P7aOFL1AAy+/kziLO/2r/TsAAAAAAAAAAAAizjzhkOe6SLVBvAAJ7zxR1OS77sHKPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2hznNiFGc0CUhpRSlIwBbJRL3owBdJRHQKg4YKG+K0l1fZQoaAZoCWgPQwh7wac5eV9uQJSGlFKUaBVLn2gWR0CoOGKd6LOzdX2UKGgGaAloD0MIBtodUoyCcUCUhpRSlGgVS8RoFkdAqDiIN0/4ZnV9lChoBmgJaA9DCLE1W3kJu3NAlIaUUpRoFUvHaBZHQKg45a/yoXN1fZQoaAZoCWgPQwh8uOS4U0RwQJSGlFKUaBVLtGgWR0CoORQXhwVCdX2UKGgGaAloD0MIQ46tZwgmcUCUhpRSlGgVS65oFkdAqDk0s189fXV9lChoBmgJaA9DCGzoZn+gVnFAlIaUUpRoFUu7aBZHQKg5aKjzqbB1fZQoaAZoCWgPQwiG4o43OYZyQJSGlFKUaBVLx2gWR0CoOZbSy+pPdX2UKGgGaAloD0MITtGRXH5cc0CUhpRSlGgVS8BoFkdAqDmWeSSvDHV9lChoBmgJaA9DCJc8npafqHJAlIaUUpRoFUvmaBZHQKg57c6/7BR1fZQoaAZoCWgPQwh2VDVB1BFxQJSGlFKUaBVLu2gWR0CoOgvuG9HudX2UKGgGaAloD0MIVP61vDIWckCUhpRSlGgVS9poFkdAqDoQ5HVf/nV9lChoBmgJaA9DCMmvH2KDHXNAlIaUUpRoFUu9aBZHQKg6SHTqjah1fZQoaAZoCWgPQwgof/eOWk5zQJSGlFKUaBVLy2gWR0CoOk0g0TDgdX2UKGgGaAloD0MI7Sqk/CSrcECUhpRSlGgVS7xoFkdAqDplhE0BO3V9lChoBmgJaA9DCKsHzEMmSHJAlIaUUpRoFUvVaBZHQKg6fe2NNrV1fZQoaAZoCWgPQwj93NCUXcNyQJSGlFKUaBVLzWgWR0CoOrqNp/PPdX2UKGgGaAloD0MI5Nak21Jic0CUhpRSlGgVS95oFkdAqDq+z0HyE3V9lChoBmgJaA9DCIaSyamdgHNAlIaUUpRoFUuxaBZHQKg60j/Mnqp1fZQoaAZoCWgPQwhuE+6V+WtxQJSGlFKUaBVLv2gWR0CoOyG7SRbKdX2UKGgGaAloD0MIEALyJVS4b0CUhpRSlGgVS85oFkdAqDtrJr+HanV9lChoBmgJaA9DCJPIPsjyF3BAlIaUUpRoFUvFaBZHQKg7sr5IpYt1fZQoaAZoCWgPQwgCYhIuZC5xQJSGlFKUaBVL1WgWR0CoO7TuWrwOdX2UKGgGaAloD0MIxAq3fGS2cUCUhpRSlGgVS8loFkdAqDvCrHU+cHV9lChoBmgJaA9DCKwcWmQ7625AlIaUUpRoFUusaBZHQKg7wrhisn11fZQoaAZoCWgPQwhvhEVFXF9xQJSGlFKUaBVLn2gWR0CoPBYpUgjhdX2UKGgGaAloD0MIIGKDhdNVc0CUhpRSlGgVS89oFkdAqDxAbIcR2HV9lChoBmgJaA9DCBYzwtuD4nJAlIaUUpRoFUvVaBZHQKg8ViwSrYJ1fZQoaAZoCWgPQwg58kBkkRJzQJSGlFKUaBVLymgWR0CoPHX5eqrBdX2UKGgGaAloD0MIK4TVWEKcZECUhpRSlGgVTegDaBZHQKg8hQ9A5aN1fZQoaAZoCWgPQwjp1mt6kFZzQJSGlFKUaBVLtmgWR0CoPK/R3NcGdX2UKGgGaAloD0MIByXMtH3GbkCUhpRSlGgVS7doFkdAqDy2WyC4BnV9lChoBmgJaA9DCCtsBrhgyXFAlIaUUpRoFUvmaBZHQKg8uSX+l0p1fZQoaAZoCWgPQwhSKAtfXyByQJSGlFKUaBVL12gWR0CoPMcAq/dqdX2UKGgGaAloD0MIGjIepRLacECUhpRSlGgVS7RoFkdAqD0CR4hUznV9lChoBmgJaA9DCNS6DWo/mHJAlIaUUpRoFUvtaBZHQKg9PwsoUi91fZQoaAZoCWgPQwhBg02dx99tQJSGlFKUaBVLsmgWR0CoPYLIPsiTdX2UKGgGaAloD0MIdqimJKuIcUCUhpRSlGgVS89oFkdAqD3Jf8dgfHV9lChoBmgJaA9DCKezk8HRAnFAlIaUUpRoFUvsaBZHQKg91GiHqNZ1fZQoaAZoCWgPQwjBHhMpDWV0QJSGlFKUaBVLtWgWR0CoPeFS88LbdX2UKGgGaAloD0MI/kgRGZbCckCUhpRSlGgVS+FoFkdAqD33YYixFHV9lChoBmgJaA9DCMwKRbrf7nBAlIaUUpRoFUvfaBZHQKg9/c8kleF1fZQoaAZoCWgPQwiH/Z5Yp+VwQJSGlFKUaBVLoWgWR0CoPg8Oby6MdX2UKGgGaAloD0MIY5y/CcXMcUCUhpRSlGgVS8NoFkdAqD4oD1XeWXV9lChoBmgJaA9DCL/WpUYou3NAlIaUUpRoFUvEaBZHQKg+Om3vx6R1fZQoaAZoCWgPQwgUlnhAGUJxQJSGlFKUaBVLsWgWR0CoPl7LU1AJdX2UKGgGaAloD0MI83aE0wJib0CUhpRSlGgVS71oFkdAqD6Ejs2NvXV9lChoBmgJaA9DCGjPZWoS93JAlIaUUpRoFUviaBZHQKg+nuZThpB1fZQoaAZoCWgPQwiTjnIw2xFxQJSGlFKUaBVL32gWR0CoPtNGus90dX2UKGgGaAloD0MIDcNHxJRWckCUhpRSlGgVS9xoFkdAqD7dFQVKw3V9lChoBmgJaA9DCEnyXN8HxHBAlIaUUpRoFUvRaBZHQKg/AhBZ6ld1fZQoaAZoCWgPQwj/ykqT0u9xQJSGlFKUaBVLw2gWR0CoPyHCoCMhdX2UKGgGaAloD0MIK78MxoiiUUCUhpRSlGgVS4doFkdAqD82S2Yv4HV9lChoBmgJaA9DCBSYTus2eW9AlIaUUpRoFUu0aBZHQKg/ilvZRKp1fZQoaAZoCWgPQwhn0xHATc1wQJSGlFKUaBVLv2gWR0CoP5Auyu6mdX2UKGgGaAloD0MIGTvhJbiscUCUhpRSlGgVS9NoFkdAqD/7z06HTXV9lChoBmgJaA9DCHNmu0KfTHFAlIaUUpRoFUvOaBZHQKhAIEK3NLV1fZQoaAZoCWgPQwisWPymMENyQJSGlFKUaBVL3mgWR0CoQDOqebuudX2UKGgGaAloD0MIcAuW6oLrckCUhpRSlGgVS+RoFkdAqEB1rl/6PHV9lChoBmgJaA9DCJxpwvaTx3BAlIaUUpRoFUuuaBZHQKhAkIrvsqt1fZQoaAZoCWgPQwgAGqVLf15xQJSGlFKUaBVL1WgWR0CoQKLKmsNldX2UKGgGaAloD0MIWksBaX/sb0CUhpRSlGgVS6doFkdAqEC3vv0AcXV9lChoBmgJaA9DCGQ730+NfnJAlIaUUpRoFUvBaBZHQKhA0SOinHh1fZQoaAZoCWgPQwiQvd79sSV0QJSGlFKUaBVL+GgWR0CoQNfrB0p3dX2UKGgGaAloD0MIfEW3XlOYbkCUhpRSlGgVS7xoFkdAqEExN0vGqHV9lChoBmgJaA9DCBQEj2/vM25AlIaUUpRoFUvHaBZHQKhBNeRgZ0l1fZQoaAZoCWgPQwg8nwH1pitzQJSGlFKUaBVLwGgWR0CoQau+ZgG9dX2UKGgGaAloD0MI5j45ClAycECUhpRSlGgVS71oFkdAqEIxRoAXEnV9lChoBmgJaA9DCOlkqfW+UXFAlIaUUpRoFUvlaBZHQKhCM1KGtZF1fZQoaAZoCWgPQwgouFhRw29zQJSGlFKUaBVLvWgWR0CoQnLl3hXKdX2UKGgGaAloD0MInpYfuErNcUCUhpRSlGgVS9NoFkdAqEKl/4Irv3V9lChoBmgJaA9DCIiAQ6hSzXNAlIaUUpRoFU2AAWgWR0CoQuDG1hLHdX2UKGgGaAloD0MILXk8Lf8zc0CUhpRSlGgVS7loFkdAqEMrJfYzznV9lChoBmgJaA9DCOguibOiqHJAlIaUUpRoFUvkaBZHQKhDQ/bj94x1fZQoaAZoCWgPQwgA5lq0QGBxQJSGlFKUaBVL0GgWR0CoQ24+KTB7dX2UKGgGaAloD0MI2ubG9MQPc0CUhpRSlGgVS+poFkdAqEN3m3fAK3V9lChoBmgJaA9DCNfep6pQkHFAlIaUUpRoFUuxaBZHQKhDd8eCCjF1fZQoaAZoCWgPQwhuowG8BThwQJSGlFKUaBVL6GgWR0CoQ4Pkili0dX2UKGgGaAloD0MI7rH0oUtKcUCUhpRSlGgVS8NoFkdAqEOuIAOrhnV9lChoBmgJaA9DCBuBeF0/0HJAlIaUUpRoFUv1aBZHQKhDvMaCL/F1fZQoaAZoCWgPQwgkRPmCFmhvQJSGlFKUaBVLr2gWR0CoQ+Hww0wbdX2UKGgGaAloD0MIMgQAx57zb0CUhpRSlGgVS71oFkdAqER4yfthNXV9lChoBmgJaA9DCMPy59vCB3NAlIaUUpRoFUvHaBZHQKhEl7KJVKh1fZQoaAZoCWgPQwhJ9DKKJTBxQJSGlFKUaBVLtmgWR0CoRQFe4TbndX2UKGgGaAloD0MIgXhdv2AackCUhpRSlGgVS9hoFkdAqEUF7x/d7HV9lChoBmgJaA9DCOONzCN/NnFAlIaUUpRoFUuYaBZHQKhFLlFMIu51fZQoaAZoCWgPQwgST3YzY4ZyQJSGlFKUaBVLrmgWR0CoRTMURFqjdX2UKGgGaAloD0MI1v1jIfr7cUCUhpRSlGgVS9xoFkdAqEVE2tMfzXV9lChoBmgJaA9DCMk88gcD03JAlIaUUpRoFUu4aBZHQKhFlYigTRJ1fZQoaAZoCWgPQwhKz/QSY/xxQJSGlFKUaBVLzGgWR0CoRaMKLKmsdX2UKGgGaAloD0MIIvq19RMycECUhpRSlGgVS9RoFkdAqEXv336AOXV9lChoBmgJaA9DCEwZOKAlV3JAlIaUUpRoFUu/aBZHQKhF+5wwTM91fZQoaAZoCWgPQwgurvGZ7PhxQJSGlFKUaBVL2GgWR0CoRglpGnXNdX2UKGgGaAloD0MIuLBuvPtmckCUhpRSlGgVS+ZoFkdAqEZduzhP03V9lChoBmgJaA9DCAqd19ilW3JAlIaUUpRoFUvVaBZHQKhGY1dgOSZ1fZQoaAZoCWgPQwiSy39IP3NyQJSGlFKUaBVLzGgWR0CoRuVDrqt6dX2UKGgGaAloD0MI1ub/VQdtckCUhpRSlGgVS+BoFkdAqEdDg0j1PHV9lChoBmgJaA9DCI+n5QeuA3JAlIaUUpRoFUvEaBZHQKhHWI/qxC91fZQoaAZoCWgPQwiq04GsZ0xwQJSGlFKUaBVLsmgWR0CoR2G16Vt5dX2UKGgGaAloD0MIzqlkAOjFcUCUhpRSlGgVS7toFkdAqEdnI2fkFXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 380,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa9774b24bba5d76138c1b1934d9b63949a485f0a5f7ecf135cf8d318e82c92f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3adf6af74e814dcbf78d6981c55b68c7e5b2e3d8e5c393989f0d47f8820651fd
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (211 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.39140677760673, "std_reward": 17.60465661309064, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T08:42:46.346087"}