MoMonir commited on
Commit
a492372
1 Parent(s): 9c650c3

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ hermes-2-pro-llama-3-8b.Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ hermes-2-pro-llama-3-8b.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
38
+ hermes-2-pro-llama-3-8b.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Meta-Llama-3-8B
3
+ tags:
4
+ - Llama-3
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - DPO
9
+ - RLHF
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ model-index:
17
+ - name: Hermes-2-Pro-Llama-3-8B
18
+ results: []
19
+ license: apache-2.0
20
+ language:
21
+ - en
22
+ datasets:
23
+ - teknium/OpenHermes-2.5
24
+ widget:
25
+ - example_title: Hermes 2 Pro
26
+ messages:
27
+ - role: system
28
+ content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.
29
+ - role: user
30
+ content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.
31
+ ---
32
+
33
+
34
+ # MoMonir/Hermes-2-Pro-Llama-3-8B-GUFF
35
+ This model was converted to GGUF format from [`NousResearch/Hermes-2-Pro-Llama-3-8B`](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)
36
+ Refer to the [original model card](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) for more details on the model.
37
+
38
+ <!-- README_GGUF.md-about-gguf start -->
39
+ ### About GGUF ([TheBloke](https://huggingface.co/TheBloke) Description)
40
+
41
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
42
+
43
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
44
+
45
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
46
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
47
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
48
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
49
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
50
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
51
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
52
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
53
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
54
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
55
+
56
+ <!-- README_GGUF.md-about-gguf end -->
57
+
58
+ # #--# Original Model Card #--#
59
+ # Hermes 2 Pro - Llama-3 8B
60
+
61
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png)
62
+
63
+ ## Model Description
64
+
65
+ Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.
66
+
67
+ This new version of Hermes maintains its excellent general task and conversation capabilities - but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics as well, scoring a 90% on our function calling evaluation built in partnership with Fireworks.AI, and an 84% on our structured JSON Output evaluation.
68
+
69
+ Hermes Pro takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role in order to make function calling reliable and easy to parse. Learn more about prompting below.
70
+
71
+ This version of Hermes 2 Pro adds several tokens to assist with agentic capabilities in parsing while streaming tokens - `<tools>`, `<tool_call>`, `<tool_response>` and their closing tags are single tokens now.
72
+
73
+ This work was a collaboration between Nous Research, @interstellarninja, and Fireworks.AI
74
+
75
+ Learn more about the function calling system for this model on our github repo here: https://github.com/NousResearch/Hermes-Function-Calling
76
+
77
+ ## Example Outputs
78
+
79
+ ### Ask for a structured JSON output:
80
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ll2j2wkQffCsiSwUjfRUq.png)
81
+
82
+ ### Write the plot for a story where anime became real life:
83
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/h_7aXGXdm2p2ONYuDF4Ii.png)
84
+
85
+ ### Coding Assistance
86
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bBd0hyAb8w5rKUiN2w1I6.png)
87
+
88
+ # Prompt Format
89
+
90
+ Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
91
+
92
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
93
+
94
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
95
+
96
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
97
+
98
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
99
+ ```
100
+ <|im_start|>system
101
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
102
+ <|im_start|>user
103
+ Hello, who are you?<|im_end|>
104
+ <|im_start|>assistant
105
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
106
+ ```
107
+
108
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
109
+ `tokenizer.apply_chat_template()` method:
110
+
111
+ ```python
112
+ messages = [
113
+ {"role": "system", "content": "You are Hermes 2."},
114
+ {"role": "user", "content": "Hello, who are you?"}
115
+ ]
116
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
117
+ model.generate(**gen_input)
118
+ ```
119
+
120
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
121
+ that the model continues with an assistant response.
122
+
123
+ To utilize the prompt format without a system prompt, simply leave the line out.
124
+
125
+ ## Prompt Format for Function Calling
126
+
127
+ Our model was trained on specific system prompts and structures for Function Calling.
128
+
129
+ You should use the system role with this message, followed by a function signature json as this example shows here.
130
+ ```
131
+ <|im_start|>system
132
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
133
+ <tool_call>
134
+ {"arguments": <args-dict>, "name": <function-name>}
135
+ </tool_call><|im_end|>
136
+ ```
137
+
138
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
139
+ ```
140
+ <|im_start|>user
141
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
142
+ ```
143
+
144
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
145
+ ```
146
+ <|im_start|>assistant
147
+ <tool_call>
148
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
149
+ </tool_call><|im_end|>
150
+ ```
151
+
152
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
153
+ ```
154
+ <|im_start|>tool
155
+ <tool_response>
156
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
157
+ </tool_response>
158
+ <|im_end|>
159
+ ```
160
+
161
+ The assistant will then read in that data from the function's response, and generate a natural language response:
162
+ ```
163
+ <|im_start|>assistant
164
+ The stock fundamentals data for Tesla (TSLA) are as follows:
165
+ - **Symbol**: TSLA
166
+ - **Company Name**: Tesla, Inc.
167
+ - **Sector**: Consumer Cyclical
168
+ - **Industry**: Auto Manufacturers
169
+ - **Market Capitalization**: $566,160,130,480
170
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
171
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
172
+ - **Dividend Yield**: N/A
173
+ - **Trailing Earnings Per Share (EPS)**: $4.3
174
+ - **Beta Value of the Stock**: 2.42
175
+ - **52-Week High Price of the Stock**: $299.29
176
+ - **52-Week Low Price of the Stock**: $152.37
177
+
178
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
179
+ ```
180
+
181
+ ## Prompt Format for JSON Mode / Structured Outputs
182
+
183
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
184
+
185
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
186
+
187
+ ```
188
+ <|im_start|>system
189
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
190
+ ```
191
+
192
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
193
+
194
+
195
+ # Benchmarks
196
+
197
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vOYv9wJUMn1Xrf4BvmO_x.png)
198
+
199
+ ## GPT4All:
200
+ ```
201
+ | Task |Version| Metric |Value | |Stderr|
202
+ |-------------|------:|--------|-----:|---|-----:|
203
+ |arc_challenge| 0|acc |0.5520|± |0.0145|
204
+ | | |acc_norm|0.5887|± |0.0144|
205
+ |arc_easy | 0|acc |0.8350|± |0.0076|
206
+ | | |acc_norm|0.8123|± |0.0080|
207
+ |boolq | 1|acc |0.8584|± |0.0061|
208
+ |hellaswag | 0|acc |0.6265|± |0.0048|
209
+ | | |acc_norm|0.8053|± |0.0040|
210
+ |openbookqa | 0|acc |0.3800|± |0.0217|
211
+ | | |acc_norm|0.4580|± |0.0223|
212
+ |piqa | 0|acc |0.8003|± |0.0093|
213
+ | | |acc_norm|0.8118|± |0.0091|
214
+ |winogrande | 0|acc |0.7490|± |0.0122|
215
+ ```
216
+ Average: 72.62
217
+
218
+ ## AGIEval:
219
+ ```
220
+ | Task |Version| Metric |Value | |Stderr|
221
+ |------------------------------|------:|--------|-----:|---|-----:|
222
+ |agieval_aqua_rat | 0|acc |0.2520|± |0.0273|
223
+ | | |acc_norm|0.2559|± |0.0274|
224
+ |agieval_logiqa_en | 0|acc |0.3548|± |0.0188|
225
+ | | |acc_norm|0.3625|± |0.0189|
226
+ |agieval_lsat_ar | 0|acc |0.1826|± |0.0255|
227
+ | | |acc_norm|0.1913|± |0.0260|
228
+ |agieval_lsat_lr | 0|acc |0.5510|± |0.0220|
229
+ | | |acc_norm|0.5255|± |0.0221|
230
+ |agieval_lsat_rc | 0|acc |0.6431|± |0.0293|
231
+ | | |acc_norm|0.6097|± |0.0298|
232
+ |agieval_sat_en | 0|acc |0.7330|± |0.0309|
233
+ | | |acc_norm|0.7039|± |0.0319|
234
+ |agieval_sat_en_without_passage| 0|acc |0.4029|± |0.0343|
235
+ | | |acc_norm|0.3689|± |0.0337|
236
+ |agieval_sat_math | 0|acc |0.3909|± |0.0330|
237
+ | | |acc_norm|0.3773|± |0.0328|
238
+ ```
239
+ Average: 42.44
240
+
241
+ ## BigBench:
242
+ ```
243
+ | Task |Version| Metric |Value | |Stderr|
244
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
245
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5737|± |0.0360|
246
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.6667|± |0.0246|
247
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3178|± |0.0290|
248
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1755|± |0.0201|
249
+ | | |exact_str_match |0.0000|± |0.0000|
250
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3120|± |0.0207|
251
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2014|± |0.0152|
252
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5500|± |0.0288|
253
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.4300|± |0.0222|
254
+ |bigbench_navigate | 0|multiple_choice_grade|0.4980|± |0.0158|
255
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.7010|± |0.0102|
256
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4688|± |0.0236|
257
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1974|± |0.0126|
258
+ |bigbench_snarks | 0|multiple_choice_grade|0.7403|± |0.0327|
259
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.5426|± |0.0159|
260
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.5320|± |0.0158|
261
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2280|± |0.0119|
262
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1531|± |0.0086|
263
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5500|± |0.0288|
264
+ ```
265
+ Average: 43.55
266
+
267
+ ## TruthfulQA:
268
+ ```
269
+ | Task |Version|Metric|Value| |Stderr|
270
+ |-------------|------:|------|----:|---|-----:|
271
+ |truthfulqa_mc| 1|mc1 |0.410|± |0.0172|
272
+ | | |mc2 |0.578|± |0.0157|
273
+ ```
274
+
275
+
276
+ # Inference Code
277
+
278
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
279
+
280
+ Note: To use function calling, you should see the github repo above.
281
+
282
+ ```python
283
+ # Code to inference Hermes with HF Transformers
284
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
285
+
286
+ import torch
287
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
288
+ import bitsandbytes, flash_attn
289
+
290
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Llama-3-8B', trust_remote_code=True)
291
+ model = LlamaForCausalLM.from_pretrained(
292
+ "NousResearch/Hermes-2-Pro-Llama-3-8B",
293
+ torch_dtype=torch.float16,
294
+ device_map="auto",
295
+ load_in_8bit=False,
296
+ load_in_4bit=True,
297
+ use_flash_attention_2=True
298
+ )
299
+
300
+ prompts = [
301
+ """<|im_start|>system
302
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
303
+ <|im_start|>user
304
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
305
+ <|im_start|>assistant""",
306
+ ]
307
+
308
+ for chat in prompts:
309
+ print(chat)
310
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
311
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
312
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
313
+ print(f"Response: {response}")
314
+ ```
315
+
316
+
317
+ ## Inference Code for Function Calling:
318
+
319
+ All code for utilizing, parsing, and building function calling templates is available on our github:
320
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
321
+
322
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
323
+
324
+ # Chat Interfaces
325
+
326
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
327
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
328
+
329
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
330
+
331
+
332
+ ## Quantized Versions:
333
+
334
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF
335
+
336
+ # How to cite:
337
+
338
+ ```bibtext
339
+ @misc{Hermes-2-Pro-Llama-3-8B,
340
+ url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B]https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)},
341
+ title={Hermes-2-Pro-Llama-3-8B},
342
+ author={"Teknium", "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
343
+ }
344
+ ```
345
+
hermes-2-pro-llama-3-8b.Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10c52a4820137a35947927be741bb411a9200329367ce2590cc6757cd98e746c
3
+ size 4920916288
hermes-2-pro-llama-3-8b.Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:107f3f55e26b8cc144eadd83e5f8a60cfd61839c56088fa3ae2d5679abf45f29
3
+ size 5733185856
hermes-2-pro-llama-3-8b.Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eec05fee04ba6ce677927db2d782f6c84a3cda1e3d3d02daaa162f2cb459dcf
3
+ size 6596222272
hermes-2-pro-llama-3-8b.fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eafabb0325c6d5d1735839725cf6870de56a183d8b3ebff79277e34c64fa911
3
+ size 16069416224